
ALGEBRA II: RINGS AND MODULES.
LECTURE NOTES, HILARY 2016.
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1. INTRODUCTION.

These notes accompany the lecture course ”Algebra II: Rings and modules” as
lectured in Hilary term of 2016. They are an edited version of the notes which
were put online in four sections during the lectures, compiled into a single file. A
number of non-examinable notes were also posted during the course, and these are
included in the current document as appendices.

If you find any errors, typographical or otherwise, please report them to me at
mcgerty@maths.ox.ac.uk. I will also post a note summarizing the main results of
the course next term.

CONTENTS

1. Introduction. 1
2. Rings: Definition and examples. 2
2.1. Polynomial Rings. 6
3. Basic properties. 7
3.1. The field of fractions. 8
4. Ideals and Quotients. 10
4.1. The quotient construction. 13
4.2. Images and preimages of ideals. 17
5. Prime and maximal ideals, Euclidean domains and PIDs. 18
6. An introduction to fields. 23
7. Unique factorisation. 27
7.1. Irreducible polynomials. 34
8. Modules: Definition and examples. 36
8.1. Submodules, generation and linear independence. 38
9. Quotient modules and the isomorphism theorems. 39
10. Free, torsion and torsion-free modules. 42
10.1. Homorphisms between free modules. 45
11. Canonical forms for matrices over a Euclidean Domain. 48
12. Presentations and the canonical form for modules. 52
13. Application to rational and Jordan canonical forms. 56
13.1. Remark on computing rational canonical form. 59

Date: March, 2016.
1



2 KEVIN MCGERTY.

14. Appendix A: Polynomial rings and convolution. 60
14.1. Convolution algebras. 62
15. Appendix B: Unique Factorization for Z. 64
15.1. Highest common factors. 64
15.2. Characterising prime numbers. 66
15.3. Unique factorization. 67
16. Appendix C: A PID which is not a ED 69



ALGEBRA II: RINGS AND MODULES. LECTURE NOTES, HILARY 2016. 3

2. RINGS: DEFINITION AND EXAMPLES.

The central characters of this course are algebraic objects known as rings. Infor-
mally, a ring is any mathematical structure with a notion of addition and multi-
plication (the precise definition will be given shortly). As such it is a very general
notion. The most basic example is Z, the set of integers, and in this course we will
largely focus on a class of rings (known as principal ideal domains or PIDs) which
are in some sense very similar to Z. By seeing how many properties of the integers
naturally extend to PIDs we will not only gain a better understanding of topics like
factorization, but also of questions in linear algebra, obtaining for example a canon-
ical form for matrices over an arbitrary field1. Moreover, factorization in PIDs has,
amongst other things, interesting applications to studying when certain equations
have integer solutions: for example we will be able to say for which primes p ∈ N
there are integer solutions (x, y) to the equation x2 + y2 = p.

Definition 2.1. A ring is a datum (R,+,×, 0, 1) where R is a set, 1, 0 ∈ R and +,× are
binary operations on R such that

(1) R is an abelian group under + with identity element 0.
(2) The binary operation × is associative and 1 × x = x × 1 = x for all x ∈ R.2

(3) Multiplication distributes over addition:

x × (y + z) = (x × y) + (x × z),
(x + y) × z = (x × z) + (y × z), ∀x, y, z ∈ R.

Just as for multiplication of real numbers or integers, we will tend to suppress
the symbol for the operation ×, and write “.” or omit any notation at all. If the
operation × is commutative (i.e. if x.y = y.x for all x, y ∈ R) then we say R is a
commutative ring3. Sometimes4 people consider rings which do not have a mul-
tiplicative identity. We won’t. It is also worth noting that some texts require an
additional axiom asserting that 1 , 0. In fact it’s easy to see from the other axioms
that if 1 = 0 then the ring has only one element. We will refer to this ring as the
“zero ring”. While it is a somewhat degenerate object, it seems unnecessary to me
to exclude it.

Example 2.2. i) The integers Z form the fundamental example of a ring. As
mentioned before, in some sense much of the course will be about finding
an interesting class of rings which behave a lot like Z. Modular arithmetic
gives another example: if n ∈ Z then Z/nZ, the integers modulo n, form a
ring with the usual addition and multiplication.

1The Jordan form you learned last term only applies to fields like Cwhich are algebraically closed.
2That is, R is a monoid under ×with identity element 1 if you like collecting terminology.
3We will try and use the letter R as our default symbol for a ring, in some books the default letter

is A. This is the fault of the French, as you can probably guess.
4In Algebra 1 last term, the definition of a ring did not demand a multiplicative identity,

nevertheless in this course we will require it. For more on this see www-math.mit.edu/∼
poonen/papers/ring.pdf.
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ii) The subset Z[i] = {a + ib ∈ C : a, b ∈ Z} is easily checked to be a ring under
the normal operations of addition and multiplication of complex numbers.
It is known as the Gaussian integers. We shall see later that it shares many of
the properties with the ring Z of ordinary integers.

iii) Any field, e.g. Q,R,C, is a ring – the only difference between the axioms
for a field and for a ring is that in the case of a ring we do not require the
existence of multiplicative inverses (and that, for fields one insists that 1 , 0,
so that the smallest field has two elements).

iv) If k is a field, and n ∈ N, then the set Mn(k) of n × n matrices with entries in k
is a ring, with the usual addition and multiplication of matrices.

v) Saying the previous example in a slightly more abstract way, if V is a vector
space over a field k then End(V) the space of linear maps from V to V , is a
ring. In this case the multiplication is given by composition of linear maps,
and hence is not commutative. We will mostly focus on commutative rings
in this course.

vi) Example iv) also lets us construct new rings from old, in that there is no
need to start with a field k. Given any ring R, the set Mn(R) of n × n matrices
with entries in R is again a ring.

vii) Polynomials in any number of indeterminates form a ring: if we have n
variables t1, t2, . . . , tn and k is a field then we write k[t1, . . . , tn] for the ring of
polynomials in the variables t1, . . . , tn with coefficients in k.

viii) Just as in v), there is no reason the coefficients of our polynomials have to be
a field – if R is a ring, we can build a new ring R[t] of polynomials in t with
coefficients in R in the obvious way. What is important to note in both this
and the previous example is that polynomials are no longer functions: given
a polynomial f ∈ R[t] we may evaluate it at an r ∈ R and thus associate it to
a function from R to R, but this function may not determine f . For example
if R = Z/2Z then clearly there are only finitely many functions from R to
itself, but R[t] still contains infinitely many polynomials. We will construct
R[t] rigorously shortly.

ix) If we have two rings R and S , then we can form the direct sum of the rings
R ⊕ S : this is the ring whose elements are pairs (r, s) where r ∈ R and s ∈ S
with addition and multiplication given componentwise.

x) Another way to construct new rings from old is to consider, for a ring R,
functions on some set X taking values in R. The set of all such functions
RX = { f : X → R inherits a ring structure from R by defining addition and
multiplication pointwise, i.e. ( f +g)(x) = f (x)+g(x), ( f .g)(x) = f (x).g(x) for all
x ∈ X (exactly as we do forR andC-valued functions). The simplest example
of this is when X = {1, 2, . . . , n} when you get5 Rn = {(a1, . . . , an) : ai ∈ R},
where we add and multiply coordinatewise.

xi) To make the previous example more concrete, the set of all functions f : R→
R is a ring. Moreover, the set of all continuous (or differentiable, infinitely

5Recall, for example, that sequences of real numbers are defined to be functions a : N→ R, we just
tend to write an for the value of a at n (and refer to it as the n-th term) rather than a(n).
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differentiable,...) functions also forms a ring by standard algebra of limits
results.

Definition 2.3. If R is a ring, a subset S ⊆ R is said to be a subring if it inherits the
structure of a ring from R, thus we must have 0, 1 ∈ S and moreover S is closed
under the addition and multiplication operations in R. It is then straight-forward
to check that (S ,+,×, 0, 1) satisfies the axioms for a ring.

For example, the integers Z are a subring ofQ, the ring of differentiable functions
from R to itself is a subring of the ring of all functions from R to itself. The ring of
Gaussian integers is a subring of C, as areQ,R (the latter two being fields of course).
Recall that for a group G containing a subset H, the subgroup criterion says that H is a
subgroup if and only if it is nonempty and whenever h1, h2 ∈ H we have h1h−1

2 ∈ H
(here I’m writing the group operation on G multiplicatively). We can use this to
give a similar criterion for a subset of a ring to be a subring.

Lemma 2.4 (Subring criterion). Let R be a ring and S a subset of R, then S is a subring
if and only if 1 ∈ S and for all s1, s2 ∈ S we have s1s2, s1 − s2 ∈ S .

Proof. The condition that s1 − s2 ∈ S for all s1, s2 ∈ S implies that S is an additive
subgroup by the subgroup test (note that as 1 ∈ S we know that S is nonempty).
The other conditions for a subring hold directly. �

When studying any kind of algebraic object6 it is natural to consider maps be-
tween those kind of objects which respect their structure. For example, for vector
spaces the natural class of maps are linear maps, and for groups the natural class
are the group homomorphisms. The natural class of maps to consider for rings are
defined similarly:

Definition 2.5. A map f : R → S between rings R and S is said to be a (ring) homo-
morphism if

(1) f (1R) = 1S ,
(2) f (r1 + r2) = f (r1) + f (r2),
(3) f (r1.r2) = f (r1). f (r2),

where strictly speaking we might have written +R and +S for the addition operation
in the two different rings R and S , and similarly for the multiplication operation7.
Partly because the meaning is clear from context and partly because otherwise the
notation becomes hard to read, we will (as is conventional) use the same notation
for the addition and multiplication in all rings. Note that it follows from (2) that
f (0) = 0.

6Or more generally any mathematical structure: if you’re taking Topology this term then contin-
uous maps are the natural maps to consider between topological spaces, similarly in Integration you
consider measurable functions: loosely speaking, you want to consider maps which play nicely with
the structures your objects have, be that a topology, a vector space structure, a ring structure or a
measure.

7though since I’ve already decided to suppress the notation for it, it’s hard to distinguish the two
when you suppress both...
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It is worth checking which of our examples of rings above are subrings of an-
other example, e.g. R and Z[i] are both subrings of C.

If f : R→ S is a ring homomorphism, it is easy to see that its image

im( f ) = f (R) = {s ∈ S : ∃r ∈ R, f (r) = s}

is a subring of S . If it is all of S we say that f is surjective. We say that f : R → S
is an isomorphism if there is a homomorphism g : S → R such that f ◦ g = idS
and g ◦ f = idR. It is easy to check that f is an isomorphism if and only if it is a
bijection (that is, to check that the set-theoretic inverse of f is automatically a ring
homomorphism – you probably did a similar check for linear maps between vector
spaces before.)

Example 2.6. i) For each positive integer n, there is a natural map from Z to
Z/nZ which just takes an integer to its equivalence class modulo n. The
standard calculations which show that modular arithmetic is well-defined
exactly show that this map is a ring homomorphism.

ii) Let V be a k-vector space and let α ∈ Endk(V). Then φ : k[t]→ Endk(V) given
by φ(

∑n
i=0 aiti) =

∑n
i=0 aiα

i is a ring homomorphism. Ring homomorphisms
of this type will reveal the connnection between the study of the ring k[t]
and linear algebra. (In a sense you saw this last term when defining things
like the minimal polynomial of a linear map, but we will explore this more
fully in this course.)

iii) The inclusion map i : S → R of a subring S into a ring R is a ring homomor-
phism.

iv) Let A = {

(
a −b
b a

)
: a, b ∈ R}. It is easy to check this A is a subring of Mat2(R).

The map φ : C → A given by a + ib 7→
(
a −b
b a

)
is a ring isomorphism. (This

homomorphism arises by sending a complex number z to the map of the
plane to itself given by multiplication by z.)

The first of the above examples has an important generalisation which shows
that any ring R in fact has a smallest subring: For n ∈ Z≥0 set nR = 1 + 1 + . . .+ 1 (that
is, 1, added to itself n times), and for n a negative integer nR = −(−n)R. The problem
sheet asks you to check that {nR : n ∈ Z} is a subring of R, and indeed that the map
n 7→ nR gives a ring homomorphism from φ : Z → R. Since a ring homomorphism
is in particular a homomorphism of the underlying abelian groups under addition,
using the first isomorphism theorem for abelian groups we see that {nR : n ∈ Z}, as
an abelian group, is isomorphic to Z/dZ for some d ∈ Z≥0. Since any subring S of R
contains 1, and hence, since it is closed under addition, nR for all n ∈ Z, we see that
S contains the image of φ, so that the image is indeed the smallest subring of R.

Definition 2.7. The integer d defined above is called the characteristic of the ring R.
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2.1. Polynomial Rings. The remark above that in general polynomials with coeffi-
cients in a ring cannot always be viewed as functions might have left you wonder-
ing what such a polynomial actually is. In other words, what do we mean when
we say k[t] is a ring where “t is an indeterminate.”

To make sense of this, suppose that R is a ring, and consider the set8 RN =

{ f : N → R}. We already saw this set has the structure of a ring using “pointwise”
addition and multiplication, but it also has a more interesting multiplication oper-
ation, ( f , g) 7→ f ∗ g where

( f ∗ g)(n) =
∑

k+l=n

f (k).g(l) =

n∑
k=0

f (k)g(n − k), n ∈ N.

Since k, l ∈ N, the above sum is finite, so we get a well defined function f ∗ g
(c.f. convolution of real-valued functions.). It follows directly from the definitions
that (RN,+, ∗, 1, 0) is a ring, where 0 is the constant function taking value 0, while
1(n) = 1 if n = 0 and is zero otherwise. We will write R[[t]] for this ring.

Let R[t] = { f ∈ RN : ∃N > 0, f (n) = 0 ∀n > N}. R[t] is a subring of R[[t]] (check
this) and it is the ring of polynomials with coefficients in R which we wanted to
construct. To see why, let t ∈ RN be the function such that t(1) = 1 and t(n) = 0 for
n , 1. By induction it is easy to check that tk = t ∗ . . .∗ t (k times) is such that tk(n) = 1
if k = n and is zero otherwise. Now suppose that f ∈ R[t] and say f (n) = 0 for all
n > N. Then we see that f =

∑N
n=0 f (n)tn. In fact in general for f ∈ R[[t]] we have9

f =
∑

n≥0 f (n)tn.

Remark 2.8. Our definition of ∗makes sense on a bigger set than RN: If we take the
set S = { f : Z→ R : ∃N ∈ Z, f (n) = 0 ∀n < N} then you can check that if f , g ∈ S the
function

( f ∗ g)(n) =
∑
k∈Z

f (k)g(n − k)

is well-defined (in that only finitely many terms on the right are non-zero for any
given integer n. This ring is denoted R((t)), and it turns out that if R is a field, so is
R((t)).

Note also that we have a ring homomorphism ιR : R → R[t] given by ιR(a) = a.1
which is injective, thus we can view R as a subring of R[t].

The fundamental property of polynomial rings is that they have natural “evalu-
ation” homomorphisms: to specify a homomorphism from a polynomial ring R[t]
to a ring S you only need to say what happens to the elements of R (the coefficients)
and what happens to t. We formalise this in the following Lemma.

8Here N = Z≥0 the set of non-negative integers. In some places (though hopefully not other parts
of these notes) N denotes the strictly positive integers.

9At first sight the right hand side of this expression looks like it might not make sense because it
is an infinite sum. However it does give a well-defined function on N because on any element of N
only finitely many terms (in fact exactly one) in the infinite sum are nonzero.
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Lemma 2.9. (Evaluation homomorphisms.) Let R, S be rings and φ : R→ S a ring homo-
morphism. If s ∈ S then there is an unique ring homomorphism Φ : R[t] → S such that
Φ ◦ ιR = φ (where ιR : R→ R[t] is the inclusion of R into R[t]) and Φ(t) = s.

Proof. Any element of R[t] has the form
∑n

i=0 aiti, (ai ∈ R), hence if Θ is any homo-
morphism satisfying Θ ◦ i = φ and Θ(t) = s we see that

Θ(
n∑

i=0

aiti) =

n∑
i=0

Θ(aiti) =

n∑
i=0

Θ(ai)Θ(ti) =

n∑
i=0

φ(ai)si,

Hence Θ is uniquely determined. To check there is indeed such a homomorphism
we just have to check that the function Φ(

∑n
i=0 aiti) =

∑n
i=0 φ(ai)si is indeed a homo-

morphism, but this is straight-forward from the definitions. �

3. BASIC PROPERTIES.

From now on, unless we explicitly state otherwise, all rings will be assumed to be commu-
tative.

Now that we have seen some examples of rings, we will discuss some basic
properties of rings and their elements. Note that it is a routine exercise10 in axiom
grubbing to check that, for any ring R, we have a.0 = 0 for all a ∈ R. The next
definition records the class of rings for which this is the only case in which the
product of two elements is zero.

Definition 3.1. If R is a ring, then an element a ∈ R\{0} is said to be a zero-divisor if
there is some b ∈ R\{0} such that a.b = 0. A ring which is not the zero ring and has
no zero-divisors is called an integral domain. Thus if a ring is an integral domain
and a.b = 0 then one of a or b is equal to zero.

Another way to express the fact that a ring is an integral domain is observe
that it is exactly the condition which permits cancellation11, that is, if x.y = x.z
then in an integral domain you can conclude that either y = z or x = 0. This
follows immediately from the definition of an integral domain and the fact that
x.y = x.z ⇐⇒ x.(y − z) = 0, which follows from the distributive axiom.

Example 3.2. If R is a ring, then R2 is again a ring, and (a, 0).(0, b) = (0, 0) so that
(a, 0) and (0, b) are zero-divisors. The (noncommutative) ring of n×n matrices Mn(k)
for a field k also has lots of zero divisors (even though a field k has none). The
integers modulo n have zero-divisors whenever n is not prime.

On the other hand, it is easy to see that a field has no zero-divisors. The integers
Z are an integral domain (and not a field). Slightly more interestingly, if R is an

10It’s a good idea to try and check that the axioms for a ring do indeed imply that you can perform
the standard algebraic manipulations you are used to, so things like 0.x = 0 hold in any ring. None of
the checks you have to do are very exciting, so it’s best to pick a few such statements. One operation
you have to be careful about however, is cancellation (but then again you already should be aware of
this issue from matrix algebra).

11Except for the assertion the ring is not the zero ring, the zero ring having cancellation vacuously.
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integral domain, then R[t] is again an integral domain. Moreover, the same is true
of R[[t]]. (You are asked to check this in the problem sheet.)

Recall the characteristic of a ring defined in the last lecture.

Lemma 3.3. Suppose that R is an integral domain. Then any subring S of R is also an
integral domain. Moreover, char(R), the characteristic of R, is either zero or a prime p ∈ Z.

Proof. It is clear from the definition that a subring of an integral domain must again
be an integral domain. Now from the definition of the characteristic of a ring, if
char(R) = n > 0 then Z/nZ is a subring of R. Clearly if n = a.b where a, b ∈ Z are
both greater than 1, then aR.bR = 0 in R with neither aR nor bR zero, thus both are
zero divisors. It follows that if R is an integral domain then char(R) is zero or a
prime. �

Note that in particular, the characteristic of a field is always zero or a prime.
Recall that in a ring we do not require that nonzero elements have a multiplica-

tive inverse12. Nevertheless, because the multiplication operation is associative and
there is a multiplicative identity, the elements which happen to have multiplicative
inverses form a group:

Definition 3.4. Let R be a ring. The subset

R× = {r ∈ R : ∃s ∈ R, r.s = 1},

is called the group of units in R – it is a group under the multiplication operation ×
with identity element 1.

Example 3.5. The units in Z form the group {±1}. On the other hand, if k is a field,
then the units k× = k\{0}. If R = Mn(k) then the group of units is GLn(k).

Remark 3.6. In our example of Z/nZ notice that this ring either has zero-divisors
(when n is composite) or is a field (when n is prime). In fact this is dichotomy holds
more generally: a finite integral domain is always a field. (See the problem sheet
for more details.)

3.1. The field of fractions. We first describe the construction of the rational num-
bers from the integers: A rational number is, of course, a ratio of two integers. To
say formally what this means we start with the set Q(Z) = {(a, b) ∈ Z2 : b , 0}. Then
we define a relation ∼ on Q(Z) by setting (a, b) ∼ (c, d) if ad = bc. (To see where this
comes from, notice that it expresses the fact that a/b = c/d without using division).
It is clear that ∼ is reflexive and symmetric, and an easy calculation shows that it
is transitive, so that it is an equivalence relation: Indeed suppose that (a, b) ∼ (c, d)
and (c, d) ∼ (e, f ). Then we have ad = bc and c f = de and need to check that
(a, b) ∼ (e, f ), that is, a f = be. But since d , 0 we have

a f − be = 0 ⇐⇒ d.(a f − be) = 0 ⇐⇒ (ad). f − b.(de) = 0 ⇐⇒ (bc). f − b.(c f ) = 0,

12As noted above, the axioms for a ring imply that 0.x = 0 for all x ∈ R, thus the additive identity
cannot have a multiplicative inverse, hence the most we can ask for is that every element of R\{0}
does – this is exactly what you demand in the axioms for a field.
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as required
The set of equivalence classes13 is denoted Q, and we write a

b for the equivalence
class containing (a, b). You can then check that the formulas

a
b

+
c
d

=
ad + bc

bd
,

a
b
.
c
d

=
ac
bd
,

give a well-defined addition and multiplication on the set of equivalence classes,
forming the field Q. The fact that it is a field and not just a ring follows because
a
b = 0 exactly when a = 0, and thus if a

b , 0 it has inverse b
a . The details of verifying

the operations are independent of the representatives you chose in the equivalence
classes take some time to write down rigorously, but there are no surprises in the
process.

The interesting thing to notice here is that this construction also makes sense for
an arbitrary integral domain: given an integral domain R, the relation on Q(R) =

{(a, b) ∈ R2 : b , 0} given by (a, b) ∼R (c, d) if ad = bc is an equivalence relation and
the same formulas give the set of equivalence classes F(R) the structure of a field.
At various points you need to use cancellation (for example in showing the relation
∼ is transitive) which is why the construction only works for integral domains, and
not more general rings14.

Definition 3.7. The field F(R) is known as the field of fractions of R. The ring R
embeds into F(R) via the map r 7→ r

1 , thus an integral domain is naturally a subring
of its field of fractions.

The rational numbers are the smallest field which contain the integers, in the
sense that any field which contains Z automatically contains the rationals (essen-
tially because if you are a field and contain m, n ∈ Z then you contain 1

n and so
m
n ). This is in fact the characterising property of the field of fractions, which can be
formalised as follows:

Proposition 3.8. Let k be a field and let θ : R → k be an embedding (that is, an injective
homomorphism). Then there is a unique injective homomorphism θ̃ : F(R) → k extending
θ (in the sense that θ̃|R = θ where we view R as a subring of F(R) via the above embedding).

Proof. (non-examinable): Suppose that f : F(R) → k was such a homomorphism.
Then by assumption f ( a

1 ) = θ(a), and since homomorphism of rings respect multi-
plicative inverses this forces f ( 1

a ) = θ(a)−1. But then, again because f is supposed
to be a homomorphism, we must have f ( a

b ) = f ( a
1 .

1
b ) = f ( a

1 ). f ( 1
b ) = θ(a).θ(b)−1. Thus

if f exists, it has to be given by this formula.
The rest of the proof consists of checking that this recipe indeed works: Given

(a, b) ∈ R × R\{0} first define Θ(a, b) = θ(a).θ(b)−1. Then it is easy to check that
Θ is constant on the equivalence classes of ∼ the relation defining F(R), so that it

13Notice that we have thus defined a ratio to be the set of all pairs of integers (a, b) (with b non-zero)
which are in that ratio.

14There is a more sophisticated construction which works for more general rings however, but we
leave that for later courses.
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induces a map θ̃ : F(R) → k. Finally it is straight-forward to see that this map is a
homomorphism extending θ as required. �

Remark 3.9. Notice that this Proposition implies that any field k of characteristic
zero contains a (unique) copy of the rationals. Indeed by definition of characteristic,
the unique homomorphism from Z to k is an embedding, and the above theorem
shows that it therefore extends uniquely to an embedding of Q into k as claimed.

4. IDEALS AND QUOTIENTS.

From now on we will assume all our rings are commutative. In this section we
study the basic properties of ring homomorphisms, and establish an analogue of
the ”first isomorphism theorem” which you have seen already for groups. Just as
for homomorphisms of groups, homomorphisms of rings have kernels and images.

Definition 4.1. Let f : R→ S be a ring homomorphism. The kernel of f is

ker( f ) = {r ∈ R : f (r) = 0},

and the image of f is
im( f ) = {s ∈ S : ∃r ∈ R, f (r) = s}.

Just as for groups, the image of a homomorphism is a subring of the target ring.
For kernels the situation is a little different. In the case of groups, kernels of ho-
momorphisms are subgroups, but not any subgroup is a kernel – the kernels are
characterised intrinsically by the property of being normal (i.e. perserved by the
conjugation action of the group). We will show that the kernels of ring homomor-
phisms can similarly be characterised intrinsically, but the situation, because we
have two binary operations, is slightly different: a kernel is both more and less
than a subring. Indeed since homomorphisms are required to send 1 to 1, the ker-
nel never contains 1 unless it is the entire ring, thus a kernel is not a subring unless
the target of the homomorphism is the zero ring15. However, it is closed under ad-
dition and mulitplication (as is straight-forward to check) and because 0.x = 0 for
any x, it in fact obeys a stronger kind of closure with respect to multiplication16: If
x ∈ ker( f ) and r ∈ R is any element of R, then f (x.r) = f (x). f (r) = 0. f (r) = 0 so that
x.r ∈ ker( f ). This motivates the following definition:

Definition 4.2. Let R be a ring. A subset I ⊆ R is called an ideal if it is a subgroup
of (R,+) and moreover for any a ∈ I and r ∈ R we have a.r ∈ I. We write I � R to
denote the fact that I is an ideal in R.

Lemma 4.3. If f : R → S is a homomorphism, then ker( f ) is an ideal. Moreover if I ⊆ R
then I is an ideal if and only if it is nonempty, closed under addition, and closed under
multiplication by arbitrary elements of R.

15It’s also worth noticing that if R is the zero ring, and θ : R→ S is a ring homomorphism we must
have S = R, since we insist that a ring homomorphism preserves the additive and multiplicative
identities.

16This is analogous to the fact that kernels of group homomorphisms, being normal, are loosely
speaking ”more closed” than arbitrary subgroups.
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Proof. This is immediate from the definitions. For the moreover part, we just need
to check that I is closed under taking additive inverses. But this follows from the
fact that it is closed under multiplication by any element of R since −x = (−1).x for
any x ∈ R. �

Note that if I is an ideal of R which contains 1 then I = R. We will shortly see
that in fact any ideal is the kernel of a homomorphism. First let us note a few basic
properties of ideals: First we need some notation: if X,Y are any subsets of R define

X + Y = {x + y : x ∈ X, y ∈ Y}, X.Y = {

n∑
k=1

xk.yk : n ∈ Z≥0, xk ∈ X, yk ∈ Y, 1 ≤ k ≤ n}.

Note that X.Y is closed under addition. By convention we will take X.Y = {0} if
either X or Y is empty.

Lemma 4.4. Let R be a ring, and I, J ideals in R and X any subset of R. Then I + J, I ∩ J
and IX are ideals. Moreover we have IJ ⊆ I ∩ J and I, J ⊆ I + J.

Proof. For I + J it is clear that this is an abelian subgroup of R, while if i ∈ I, j ∈ J
and r ∈ R, then r(i + j) = (r.i) + (r. j) ∈ I + J as both I and J are ideals, hence I + J is
an ideal. Checking I ∩ J is an ideal is similar but easier. To see that IX is an ideal,
note that it is clear that the sum of two elements of IX is of the same form, and if∑n

k=1 ikxk ∈ IX then

r.
n∑

k=1

ikxk =

n∑
k=1

(r.ik).xk ∈ IX.

Thus by the moreover part of Lemma 4.3, IX is an ideal17. The containments are all
clear once you note that if i ∈ I and j ∈ J then i j in in I ∩ J because both I and J are
ideals. �

In fact given a collection of ideals {Iα : α ∈ A} in a ring R, their intersection
⋂
α∈A Iα

is easily seen to again be an ideal. This easy fact is very useful for the following
reason:

Definition 4.5. Given any subset T of R, one can define

〈T 〉 =
⋂
T⊆I

I

(where I is an ideal) the ideal generated by T . We can also give a more explicit “from
the ground up” description of the ideal generated by a subset X:

Lemma 4.6. Let T ⊆ R be a nonempty subset. Then we have

〈T 〉 = R.T.

17This is one reason for the convention that X.Y = {0} if either of X or Y is empty – it ensures I.X
an ideal even when X is empty
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Proof. We have already seen that R.T is an ideal (since R itself is an ideal). We first
check that R.T is contained in any ideal I which contains T . But if {x1, . . . , xk} ⊆ T ⊆
J and r1, . . . , rk ∈ R, then since J is an ideal certainly rkxk ∈ J and hence

∑n
k=1 rkxk ∈ J.

Since the xk, rk and n ∈ Nwere arbitrary it follows that R.T ⊆ J.
It follows that R.T ⊆

⋂
I�R,T⊆R I, but since R.T is itself an ideal containing T ,

clearly the intersection lies in R.T also, so we have the desired equality.
�

This is completely analogous to the notion of the “span” of a subset in a vector
space. If I and J are ideals, it is easy to see that I + J = 〈I ∪ J〉. In the case where
T = {a} consists of a single element, we often write aR or18 Ra for 〈a〉.

Remark 4.7. Note that in the above, just as for span in a vector space, there is no
need for the set X to be finite.

Remark 4.8. Note that if T ⊂ R is a subset of a ring R we can also consider the
subring which it generates: the intersection of subrings is again a subring19, so we
may set

〈T 〉s =
⋂
T⊆S

S ,

where the subscript “s” is supposed to denote subring. I leave it as an exercise to
find a “ground up” description of 〈T 〉s.

Definition 4.9. If an ideal is generated by a single element we say it is principal.
Two elements a, b ∈ R are said to be associates if there is a unit u ∈ R× such that
a = u.b. (This is an equivalence relation on the elements of R).

If I = 〈a〉 then just knowing I does not quite determine a, but it almost does, at
least if R is an integral domain. The notion of associate elements lets us make this
precise.

Lemma 4.10. Let R be a domain. Then if I is a principal ideal, the generators20 of I are
associates, and any associate of a generator is again a generator. Thus the generators of a
principal ideal form a single equivalence class of associate elements of R.

Proof. If I = {0} = 〈0〉 the claim is immediate, so assume I , {0} and hence any
generator is nonzero. Let a, b ∈ R be generators of I, so I = 〈a〉 = 〈b〉. Since a ∈ 〈b〉,
there is some r ∈ R with a = r.b, and similarly as b ∈ 〈a〉 there is some s with b = s.a.
It follows that a = r.b = r(s.a) = (r.s)a, hence a(1 − r.s) = 0, and so since a , 0 and R
is an integral domain, r.s = 1, that is, r and s are units.

18Since R is commutative Ra = {r.a : r ∈ R} = {a.r : r ∈ R} = aR.
19Note also that this is a pretty general way of defining the widget “generated” by a subset of a

given object: whatever a widget is, provided the intersection of widgets is again a widget, then if S is
some subset of your object, the widget it “generates” is the intersection of all widgets which contain
S – the stability under taking intersections ensures this intersection is still a widget, and it is thus the
smallest widget containing S . The closure of sets in topological spaces, the ideal generated by a set
in a ring and the subring generated by a set in a ring are all defined in this way.

20i.e. the elements a ∈ R such that I = 〈a〉.
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Finally if I = 〈a〉 and b = u.a where u ∈ R×, then certainly b ∈ 〈a〉 = I so that
〈b〉 ⊆ I, but also if x ∈ I, then x = r.a for some r ∈ R and hence x = r.(u−1.b) = (r.u−1).b
so that x ∈ 〈b〉, and hence I ⊆ 〈b〉. It follows I = 〈b〉 as required. �

For example in Zwe will see that the ideals are all of the form 〈n〉 and the integer
n is determined up to sign by the ideal 〈n〉 (the units in Z being exactly {±1}).

4.1. The quotient construction. In order to show that ideals and kernels of ring
homorphisms are the same thing, we now study a notion of quotient for rings,
similar to the quotients of groups and vector spaces which you have already seen.
This is one of the most important constructions in the course. The notion of a
quotient object is a fundamental one (not just in algebra, but also in topology and
many other subjects). It is a subtle thing that usually takes some time to become
accustomed to, but it is absolutely essential.

Suppose that R is a ring and that I is an ideal in R. Then since (I,+) is a subgroup
of the abelian group (R,+), we may form the quotient group (R/I,+). We briefly
recall the construction of the group (R/I,+): The relations r ∼ s if r − s ∈ I is easily
checked to be an equivalence relation21, and the equivalence classes are the cosets
{r + I : r ∈ R}. We want to endow R/I with the structure of an abelian group in such
a way that the map q : → R/I sending an element r ∈ R to its equivalence class
r + I ∈ R/I is a group homomorphism. This condition forces us to require

(r1 + I) + (r2 + I) = (r1 + r2) + I,

so the only thing to do is to check that this formula makes sense, that is, to check
that it is independent of the choice of representatives r1.r2. To see this, suppose
that s j ∈ r j + I for j = 1, 2 are two other choices of representatives. Then there are
elements i1, i2 ∈ I such that s j = r j +i j ( j = 1, 2), and hence s1 + s2 = (r1 +r2)+(i1 +i2) ∈
(r1 + r2) + I since i1 + i2 ∈ I.

Now that we have shown R/I inherits a binary operation from R, it is easy to
see that that operation makes R/I into an abelian group with identity 0 + I. We
now want to show that R/I has the structure of a ring where the multiplication
is again induced from that on R, so that the map q : R → R/I is actually a ring
homomorphism. Again there is at most one possibility for the multiplication on
R/I which could satisfy this condition: we must have

(r1 + I) × (r2 + I) = r1.r2 + I,

or said in terms of the quotient map q : R→ R/I we must have q(r1).q(r2) = q(r1.r2).
Again the issue is whether this is indeed a well-defined operation, i.e. independent
of the choice of representatives r1, r2. Thus as before take s j = r j + i j some other
representatives for the cosets r j + I, ( j = 1, 2). Then we have

s1.s2 = (r1 + i1).(r2 + i2) = r1.r2 + (i1r2 + r1i2 + i1i2) ∈ r1.r2 + I

since i1r2, r1i2, i1i2 all lie in I since I is an ideal. It follows that we have a well-defined
binary operation on R/I coming from the multiplication in R also.

21And you have done similar checks for groups and vector spaces before.
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Theorem 4.11. The datum (R/I,+,×, 0 + I, 1 + I) defines a ring structure on R/I and
moreover the map q : R → R/I given by q(r) = r + I is a surjective ring homomorphism.
Moreover the kernel of q is the ideal I.

Proof. Checking each axiom is an easy consequence of the fact that the binary op-
erations +,× on R/I are defined by picking arbitrary representatives of the cosets,
computing up in the ring R and then taking the coset of the answer (the important
part of the definitions being that this last step is well-defined). Thus for example,
to check × is associative, let C1,C2,C3 be elements of R/I and choose r1, r2, r3 ∈ R
such that Ci = q(ri) = ri + I for i = 1, 2, 3. Then

C1 × (C2 ×C3) = q(r1) × (q(r2) × q(r3))
= q(r1) × q(r2r3) = q(r1.(r2r3))
= q((r1r2).r3)) = q(r1r2) × q(r3)
= (q(r1) × q(r2)) × q(r3) = (C1 ×C2) ×C3.

where in going from the second to the third line we use the associativity of multi-
plication in R. Checking the other axioms is similarly straight-forward. Finally, the
map q : R → R/I is clearly surjective, and that it is a homomorphism is also imme-
diate from the definitions. Clearly q(r) = 0 ∈ R/I precisely when q(r) = r + I = 0 + I,
that is precisely when r ∈ I. Thus ker(q) = I as required. �

The map q : R → R/I is called the quotient homomorphism (or quotient map). The
next corollary establishes the answer to the question we started this section with:
what are the subsets of R which are kernels of homomorphisms from R? We already
noted that any kernel is an ideal, but the construction of quotients now gives us the
converse:

Corollary 4.12. The ideals in R are exactly the kernels of the set of homomorphisms with
domain R.

Proof. We have already seen that the kernel of a ring homomorphism is always an
ideal so it only remains to show that any ideal is the kernel of some homomor-
phism. But this is exactly what the previous theorem shows: If I is an ideal and
q : R→ R/I is the quotient map then q is a ring homomorphism and ker(q) = I. �

For our next result about quotient rings, it may be helpful to compare with the
following result from last term’s linear algebra about quotient vector spaces: If
T : V → W is a linear map, and U < V is a subspace, then T induces a linear map
T̄ : V/U → W on the quotient space V/U if and only if U ⊆ ker(T ).

Theorem 4.13. (Universal Property of Quotients.) Suppose that R is a ring, I is an ideal
of R, and q : R → R/I the quotient homomorphism. If φ : R → S is a ring homomorphism
such that I ⊆ ker(φ), then there is a unique ring homomorphism φ̄ : R/I → S such that
φ̄ ◦ q = φ. That is, the following diagram commutes:
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R
φ //

q   A
AA

AA
AA

A S

R/I
φ̄

>>||||||||

Moreover ker(φ̄) is the ideal ker(φ)/I = {m + I : m ∈ ker(φ)}.

Proof. Since q is surjective, the formula φ̄(q(r)) = φ(r) (r ∈ R) uniquely determines
the values of φ̄, so that φ̄ is unique if it exists. But if r − r′ ∈ I then since I ⊆ ker(φ) it
follows that 0 = φ(r − r′) = φ(r) − φ(r′) and hence φ is constant on the I-cosets, and
therefore induces a map φ̄(m + I) = φ(m). The fact that φ̄ is a homomorphism then
follows directly from the definition of the ring structure on the quotient R/I: For
example, to see that φ̄ respects multiplication note that if C1,C2 ∈ R/I then picking
r1, r2 such that C1 = q(r1),C2 = q(r2) we have

φ̄(C1.C2) = φ̄(q(r1)q(r2)) = φ̄(q(r1r2)) = φ(r1r2) = φ(r1).φ(r2)

= φ̄(q(r1))φ̄(q(r2)) = φ̄(C1).φ̄(C2),

where in the above equalities we just use the defining property φ̄ ◦ q = φ of φ̄ and
the fact that q and φ are homomorphisms. To see what the kernel of φ̄ is, note that
φ̄(r + I) = φ(r) = 0 if and only if r ∈ ker(φ), and hence r + I ∈ ker(φ)/I as required. �

Remark 4.14. The name “universal property” is perhaps overly grand, but you
should think of it as analogous to the fact that the ideal generated by a set is char-
acterized as the smallest ideal containing that set: The quotient R/I is the largest
quotient of R which sends all of I to 0, in the strong sense that if φ : R → S is any
surjective homomorphism such that φ(I) = 0, then R/I surjects onto S (and thus is
“at least as large” as S ).

This theorem has important corollaries22 which are collectively known as the
”Isomorphism theorems” for rings.

Corollary 4.15. We have the following isomorphisms:
(1) (First isomorphism theorem.) If φ : R → S is a homomorphism then φ induces an

isomorphism φ̄ : R/ker(φ)→ im(φ).
(2) (Second isomorphism theorem.) If R is a ring, A a subring of R, and I an ideal of R,

then
(A + I)/I � A/(A ∩ I),

(3) (Third isomorphism theorem.) Suppose that I1 ⊆ I2 are ideals in R. Then we have

(R/I1)/(I2/I1) � R/I2.

Proof. For the first isomorphism theorem, apply the universal property to I = ker(φ).
Since in this case ker(φ̄) = ker(φ)/ker(φ) = 0 it follows φ̄ is injective and hence in-
duces an isomorphism onto its image which from the equation φ̄ ◦ q = φ must be
exactly im(φ).

22Though as I said in lecture, they are somewhat over-rated – the crucial thing to understand is
the quotient construction itself, and the universal property.
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For the second isomorphism theorem, note first that if A is a subring and I is an
ideal, it is easy to check23 that A + I is again a subring of R which contains I as an
ideal. Let q : R → R/I be the quotient map. It restricts to a homomorphism p from
A to R/I, whose image is clearly (A + I)/I, so by the first isomorphism theorem it is
enough to check that the kernel of p is A ∩ I. But this is clear: if a ∈ A has p(a) = 0
then a + I = 0 + I so that a ∈ I, and so a ∈ A ∩ I. (Note this argument automatically
shows that A ∩ I is an ideal of A since it is the kernel of the homomorphism p).

For the third isomorphism theorem, let qi : R→ R/I j for j = 1, 2. By the universal
property for q2 we see that there is a homomorphism q̄2 : R/I1 → R/I2 induced
by the map q2 : R → R/I2, with kernel ker(q2)/I1 = I2/I1 and q̄2 ◦ q1 = q2. Thus
q̄2 is surjective (since q2 is) and hence the result follows by the first isomorphism
theorem. �

Example 4.16. Suppose that V is a k-vector space and α ∈ End(V). Then we saw
before that φ : k[t] → End(V) given by φ( f ) = f (α). It is easy to see that this map
is a homomorphism, and hence we see that im(φ) is isomorphic to k[t]/I where
I = ker( f ) is a principal ideal. The monic polynomial generating I is the minimal
polynomial of α as studied in Algebra I.

Another useful application of these results is a general version24 of the “Chi-
nese Remainder Theorem”. To state it recall from Example 2.2 ix) the direct sums
construction for rings: if R and S are rings, then R ⊕ S is defined to be the ring
of ordered pairs (r, s) where r ∈ R, s ∈ S , with addition and multiplication done
componentwise.

Theorem 4.17. Let R be a ring, and I, J ideals of R such that I + J = R. Then

R/I ∩ J � R/I ⊕ R/J.

Proof. We have quotient maps q1 : R → R/I and q2 : R → R/J. Define q : R → R/I ⊕
R/J by q(r) = (q1(r), q2(r)). By the first isomorphism theorem, it is enough to show
that q is surjective and that ker(q) = I ∩ J. The latter is immediate: if q(r) = 0 then
q1(r) = 0 and q2(r) = 0, whence r ∈ I and r ∈ J, that is, r ∈ I ∩ J. To see that q is
surjective, suppose (r + I, s + J) ∈ R/I ⊕ R/J. Then since R = I + J we may write
r = i1 + j1 and s = i2 + j2, where i1, i2 ∈ I, j1, j2 ∈ J. But then r + I = j1 + I and
s + J = i2 + J, so that q( j1 + i2) = (r + I, s + J). �

Remark 4.18. Suppose that R = I + J where I and J are ideals as above and moreover
that I ∩ J = {0}. Then each r ∈ R can be written uniquely in the form i + j where i ∈ I
and j ∈ J (the proof is exactly the same as it is for subspaces in a vector space).
In this situation we write25 R = I ⊕ J. Note that since I.J ⊆ I ∩ J it follows that

23See the problem set.
24The classical Chinese Remainder Theorem shows that if m, n ∈ Z are coprime then for any a, b ∈ Z

there is a solution to the pair of equations x = a mod m and x = b mod n, moreover this solution is
unique modulo m.n. Check you see why the general version stated above implies this.

25The notation is compatible with the direct sum notation used in the first lecture – see the next
paragraph.



18 KEVIN MCGERTY.

i. j = 0 for any i ∈ I, j ∈ I, thus if i1, i2 ∈ I and j1, j2 ∈ J we see (i1 + j1).(i2 + j2) =

i1i2 + j1 j2. Writing 1 = e1 + e2 where e1 ∈ I and e2 ∈ J if follows (I,+,×, 0, e1) is a
ring as is (J,+,×, 0, e2), and it is easy to see that these rings are isomorphic to R/J
and R/I respectively. This gives a more explicit description of the isomorphism
R � R/I ⊕ R/J provided by the Chinese Remainder Theorem in this case.

Note also that if we start with two rings S 1, S 2, and define R = S 1 ⊕ S 2 as in
Example 2.2 ix), then the copies S R

1 , S
R
2 of S 1 and S 2 inside R (that is, the elements

{(s, 0) : s ∈ S 1} and {(0, t) : t ∈ S 2} respectively) are ideals in R (not subrings because
they do not contain the multiplicative identity element (1, 1)) and clearly their in-
tersection is {(0, 0)}, so that R = S R

1 ⊕ S R
2 , thus the “external” notion of direct sum

we saw in lecture 1 is compatible with the “internal” direct sum notation we used
above (that is, when we write R = I ⊕ J to denote that I, J are ideals in R with
I + J = R and I ∩ J = {0}).

When R = Z and I = nZ = {nd : d ∈ Z}, J = mZ, then you can check that
I + J = Z precisely when n and m are coprime, and then it also follows that I ∩
J = (n.m)Z (the problem sheet asks you to work out the details of this), and so we
recover the classical “Chinese Remainder Theorem”: if m, n are coprime integers,
then Z/(nm)Z � (Z/nZ)⊕ (Z/mZ). For example, if R = Z/6Z then R = 3̄R⊕ 4̄R (writing
n̄ for n + 6Z etc.) and this gives the identification R = Z/2Z ⊕ Z/3Z.

4.2. Images and preimages of ideals. Next we want to compare ideals in a quo-
tient ring with ideals in the original ring.

Lemma 4.19. Let φ : R→ S be a surjective homomorphism of rings. If I � R then

φ(I) = {s ∈ S : ∃i ∈ I, s = φ(i)}

is an ideal in S . Similarly if J � S then φ−1(J) = {r ∈ R : φ(r) ∈ J} is an ideal in R. Thus φ
induces a pair of maps:

{ Ideals in R }
φ

..
{ Ideals in S }

φ−1
nn

Proof. Let I � R. Then φ(I) is certainly an additive subgroup of S since φ is a homo-
morphism of additive groups, and if s ∈ S and j = φ(i) ∈ φ(I), since φ is surjective,
we may find r ∈ R such that φ(r) = s. It follows that s. j = φ(r).φ(i) = φ(r.i) ∈ φ(I)
since r.i ∈ I because I is an ideal in R.

If J � S we can consider the subset φ−1(J) = {x ∈ R : φ(x) ∈ J}. We claim this
is an ideal of R. Indeed if x, y ∈ φ−1(J) then φ(x + y) = φ(x) + φ(y) ∈ J since J is an
additive subgroup, so that φ−1(J) is an additive subgroup, and if r ∈ R, x ∈ φ−1(J),
then φ(r.x) = φ(r).φ(x) ∈ J since φ(x) ∈ J and J is an ideal in S . �

The next proposition shows that these maps can be used to identify the ideals
of S with the subset of the ideals of R consisting of those ideals which contain the
kernel of the homomorphism φ.

Proposition 4.20. Let φ : R→ S be a surjective ring homomorphism and let K = ker(φ)�
R. Then
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(1) If J � S then we have φ(φ−1(J)) = J;
(2) If I � R then we have φ−1(φ(I)) = I + K.

In particular the maps J 7→ φ−1(J) and I 7→ φ(I) induce bijections between the set of ideals
in S and the set of ideals in R which contain K:

{ Ideals in R containing K }
φ

..
{ Ideals in S }

φ−1
oo

Proof. For the first part, note that if f : X → Y is any map of sets and Z ⊆ Y then
f ( f −1(Z)) = Z ∩ im( f ). Thus because φ is surjective we see that for any subset J ⊆ S
(and in particular for any ideal) φ(φ−1(J)) = J.

For the second part, note that if I � R then 0 ∈ φ(I), and so K = ker(φ) = φ−1(0) ⊆
φ−1(φ(I)). Since I ⊆ φ−1(φ(I)) also, it follows that I+K, the ideal generated by I and K,
must lie in the ideal φ−1(φ(I)). To see the reverse inclusion, note that if x ∈ φ−1(φ(I))
then by definition there is some i ∈ I with φ(x) = φ(i), and hence φ(x − i) = 0. But
then x = i + (x − i) ∈ I + K, so that φ−1(φ(I)) ⊆ I + K as required.

Finally, to see the bijective correspondence, note we have already seen that for
an ideal J�S we have φ(φ−1(J)) = J, and since K ⊆ φ−1(J) it follows that J 7→ φ−1(J)
is an injective map whose image lands in the set of ideals of R which contain K. On
the other hand, if I ⊇ K is an ideal in R the I + K = I and so φ−1(φ(I)) = I, so that
I 7→ φ(I), when restricted to the set of ideals of R which contain K, is the inverse
map to J 7→ φ−1(J) as required. �

In particular, if I � R and we take φ = q to be the canonical quotient homomor-
phism q : R→ R/I we get the following:

Corollary 4.21. Let R be a ring, I an ideal in R and q : R→ R/I the quotient map. If J is an
ideal then q(J) is an ideal in R/I, and if K is an ideal in R/I then q−1(K) = {r ∈ R : q(r) ∈ K}
is an ideal in R which contains I. Moreover, these correspondences give a bijection between
the ideals in R/I and the ideals in R which contain I.

5. PRIME AND MAXIMAL IDEALS, EUCLIDEAN DOMAINS AND PIDS.

The quotient construction gives us a powerful way to build new rings and fields.
The properties of the rings we obtain as quotients depend on the properties of the
ideals we quotient by, and this leads us to the study of certain classes of ideals. In
this section we begin studying two important such classes.

Definition 5.1. Let R be a ring, and I an ideal of R. We say that I is a maximal ideal
if it is not strictly contained in any proper ideal of R. We say that I is a prime ideal
if I , R and for all a, b ∈ R, whenever a.b ∈ I then either a ∈ I or b ∈ I. If a prime I is
principal any generator of I is said to be a prime element.

Lemma 5.2. An ideal I in a ring R is prime if and only if R/I is an integral domain26. It is
maximal if and only if R/I is a field. In particular, a maximal ideal is prime.

26Note that this is “why” one wants to exclude R from being a prime ideal – I defined an integral
domain to be a ring which was not the zero ring and had no zero divisors.
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Proof. Suppose that a, b ∈ R. Note that (a + I)(b + I) = 0 + I if and only if a.b ∈ I.
Thus if R/I is an integral domain, (a + I)(b + I) = 0 forces either a + I = 0 or b + I is
zero, that is, a or b lies in I, which shows I is prime. The converse is similar.

For the second part, note that a field is a ring which has no nontrivial ideals
(check this!). The claim then follows immediately from the correspondence between
ideals in the quotient ring and the original ring given in Lemma 4.21. Since fields
are obviously integral domains, the “in particular” claim follows immediately. �

Remark 5.3. You can also give a direct proof that a maximal ideal is prime. Indeed if
I is maximal and a.b ∈ I, and suppose that b < I. Then the ideal J = I +bR generated
by I and b is strictly larger than I, and so since I is maximal it must be all of R. But
then 1 = i + br for some i ∈ I and r ∈ R, and hence a = a.1 = a.i + (a.b)r ∈ I since
i, a.b ∈ I as required.

Example 5.4. Let R = Z. Since an ideal I in Z is in particular an subgroup of the
abelian group Z, we know it must be cyclic, that is I = dZ for some integer d. Thus
every ideal in Z is principal. An ideal dZ is prime exactly when d is prime, and
since in that case Z/dZ is a field provided d , 0 it follows the maximal ideals are
exactly the nonzero prime ideals.

We now consider a more substantial example, that of polynomials in one variable
over a field. Although the case of field coefficients is the only one we really need
for the moment, the following lemma captures, for polynomials with coefficients
in a general ring, when you can do “long division with remainders” in polyno-
mial rings. For this we first need to recall the notion of the degree of a nonzero
polynomial:

Definition 5.5. If R is a ring and f ∈ R[t] is nonzero, then we may write f =
∑n

i=0 aiti,
where an , 0. We set the degree deg( f ) of f to be n, and say an is a the leading
coefficient of f . If R is an integral domain, then for any f , g ∈ R[t] you can check that
deg( f .g) = deg( f ) + deg(g) (and so in particular this implies R[t] is also an integral
domain).

Lemma 5.6. (Division Algorithm). Let R be a ring and f =
∑n

i=0 aiti ∈ R[t], where an ∈ R×.
Then if g ∈ R[t] is any polynomial, there are unique polynomials q, r ∈ R[t] such that either
r = 0 or deg(r) < deg( f ) and g = q. f + r.

Proof. This is straight-forward to prove by induction on deg(g). Since the an ∈ R×,
if h ∈ R[t]\{0} it is easy to see27 that deg( f .h) = deg( f ) + deg(h). It follows that if
deg(g) < deg( f ) we must take q = 0 and thus r = g. Now suppose that g =

∑m
j=0 b jt j

where bm , 0 and m = deg(g) ≥ n = deg( f ). Then since a−1
n bmtm−n. f has leading term

bmtm the polynomial

h = g − a−1
n bmtm−n. f ,

27The key here is that a unit is never a zero-divisor: if a.b = 0 and a is a unit, then b = (a−1.a).b =

a−1.(a.b) = a−1.0 = 0.
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has deg(h) < deg(g). It follows by induction that there are unique q′, r′ with h =

q′. f + r′. Setting q = a−1
n bntm−n + q′ and r = r′ it follows g = q. f + r. Since q and r are

clearly uniquely determined by q′ and r′ they are also unique as required. �

It follows from the previous lemma that if k is a field, then we have the division
algorithm for all non-zero polynomials. This allows us to prove that all ideals in
k[t] are principal.

Lemma 5.7. Let I be a nonzero ideal in k[t]. Then there is a unique monic polynomial f
such that I = 〈 f 〉. In particular, all ideals in k[t] are principal.

Proof. Since I is nonzero we may pick an f ∈ I of minimal degree, and rescale it
if necessary to make it monic. We claim I = 〈 f 〉. Indeed if g ∈ I, then using the
division algorithm, we may write g = q. f + r where either r = 0 or deg(r) < deg( f ).
But then r = g − q. f ∈ I, and thus by the minimality of the degree of f ∈ I we
must have r = 0 and so g = q. f as required. The uniqueness follows28 from the
fact that if I = 〈 f 〉 and I = 〈 f ′〉 then we would have f = a. f ′ and f ′ = b. f , for
some polynomials a, b ∈ k[t]. But then f = a. f ′ = (ab). f so that a and b must have
degree zero, that is, a, b ∈ k. Since we required f and f ′ to be monic, it follows that
a = b = 1 and so f = f ′ as required. �

The division algorithm also allows to give a reasonably explicit description of
the rings we obtain quotient of a polynomial ring k[t]: We have just seen that any
nonzero ideal I is of the form 〈 f 〉 for a monic polynomial f . By the division algo-
rithm, any polynomial g can be written uniquely as g = q. f +r where deg(r) < deg( f ).
Thus the polynomials of degree strictly less that d = deg( f ) form a complete set
of representatives for the I-cosets: every coset contains a unique representative
r of degree strictly less than deg( f ). Since {1, t, . . . , tdeg( f )−1} form a basis of the k-
vector space of polynomials of degree less than deg( f ) this means that if we let
q : k[t]→ k[t]/I be the quotient map, and α = q(t), then {1, α, . . . , αd−1} form a k-basis
for k[t]/I, and we multiply in k[t]/I using the rule αd = −a0−a1α− . . .−ad−1α

d, where
f (t) = td +

∑d−1
i=0 aiti. In particular, k[t]/〈 f 〉 is a k-vector space of dimension deg( f ). We

can therefore interpret the quotient construction k[t]/〈 f 〉 as a way of building a new
ring out of k and an additional element α which satisfies the relation f (α) = 0, or
rather, the quotient construction gives us a rigorous way of doing this. The follow-
ing example shows how one can use this to give a new construction of the complex
numbers.

Example 5.8. When k = R, intuitively we build C out of R and an element “i” which
satisfied i2 + 1 = 0. The quotient construction lets us make this intuition rigorous:
we simply define C to be the quotient ring R[t]/〈t2 +1〉. Indeed this is a field because
t2 + 1 is irreducible29 in R[t] (see Lemma 5.17 below for more on this) and if we let i

28This also follows from the fact that generators of a principal ideal are all associates, and the fact
(which you proved in the first problem sheet) that the units in k[t] are exactly k×.

29In general it is not so easy to decide if a polynomial f ∈ k[t] is irreducible, but in the case where
deg( f ) ≤ 3, f is reducible if and only if it has a root in k, which can (sometimes) be easy to check.
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denote the image of t under the quotient map from R[t] to C, then C = R[t]/〈t2 + 1〉
is a two-dimensional R-vector space with basis {1, i} and i satisfies i2 + 1 = 0.

Remark 5.9. In fact with a little more care30 it is straight-forward to check that if R
is any ring and f ∈ R[t] is a monic polynomial of degree d, and we let Q = R[t]/〈 f 〉
and α = q(t) (where q : R[t] → R[t]/〈 f 〉 is the quotient map as before) then any
element of Q can be written uniquely in the form r0 + r1α+ . . .+ rd−1α

d−1, where the
multiplication in Q is given by the same rule as above. Of course for a general ring,
not all ideals in R[t] will necessarily be principal, and even if I = 〈 f 〉, if the leading
coefficient of f is not a unit, we cannot apply the division algorithm.

Notice that the argument we used in the proof of Lemma 5.7 runs exactly the
same way as the proof that every subgroup of (Z,+) is cyclic (or that any ideal in Z
is principal). This suggests it might be useful to abstract the division algorithm for
a general integral domain.

Definition 5.10. Let R be an integral domain and let N : R\{0} → N be a function.
We say that R is a Euclidean domain if given any a, b ∈ R with b , 0 there are q, r ∈ R
such that a = b.q + r and either r = 0 or N(r) < N(b).

Remark 5.11. Some texts require that the norm N satisfies additional properties, and
in practice these additional properties are often very useful. For example some-
times the norm satisfies N(a.b) = N(a).N(b) (in which case the norm is said to be
multiplicative) or N(a.b) = N(a) + N(b). The most general additional property one
often asks for is that N(a) ≤ N(a.b) for all a, b ∈ R\{0}. You can check that if R is a Eu-
clidean domain satisfying this last property then the group of units R× is precisely
the set {a ∈ R : N(a) = N(1)}. However, if one just wants to know the ring is a PID
the only condition one needs is the division algorithm.

Both Z and k[t], for any field k, are Euclidean domains with the norm given by
the absolute value and the degree function respectively. We now show that the
Gaussian integers Z[i] gives another example:

Lemma 5.12. Let R = Z[i] and let N : R → N be the function N(z) = a2 + b2, where
z = a + ib ∈ Z[i], a, b ∈ Z. Then (R,N) is an Euclidean Domain.

Proof. Note that N is the restriction of the square of the modulus function on C,
so in particular N(z.w) = N(z).N(w). We write |z|2 instead of N(z) when z ∈ C\Z[i].
Suppose that s, t ∈ Z[i] and t , 0. Then s/t ∈ C, and writing s/t = u + iv where
u, v ∈ Qwe can clearly take a, b ∈ Z such that |u− a|, |v− b| ≤ 1/2 and so q = a + ib we
have |s/t − q|2 ≤ 1

4 + 1
4 = 1

2 , and so N(s − qt) ≤ 1
2 N(t) (since N(z1z2) = N(z1).N(z2)) and

hence if r = s − qt ∈ Z[i] we see that either r = 0 or N(r) ≤ 1
2 N(t) < N(t) as required.

Note that r is not necessarily unique in this case. �

Lemma 5.13. Let (R,N) be an Euclidean domain. Then any ideal in R is principal.

30In particular, one needs to use the general statement of the division algorithm as given in Lemma
5.6.
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Proof. The proof that any ideal is principal is exactly the same as for k[t]: If I is a
nonzero ideal, take d ∈ I such that N(d) is minimal. Then if m ∈ I we may write
m = q.d + r, where r = 0 or N(r) < N(d). But r = m − q.d ∈ I so that the minimality
of N(d) forces r = 0 and so m = q.d. It follows that I ⊆ R.d, and since d ∈ I clearly
Rd ⊆ I, hence I = Rd as required. �

Definition 5.14. An integral domain in which every ideal is principal, that is, gen-
erated by a single element, is called a Principal Ideal Domain. This is usually abbre-
viated to PID. The previous Lemma shows that any Euclidean Domain is a PID.

Remark 5.15. It is also possible to consider rings in which every ideal is principal
but which are not necessarily integral domains31. Such rings are called Principal
Ideal Rings. As we mostly focus on integral domains, we will not however use this
term in this course.

We would like to calculate which ideals in a Euclidean domain are prime and
which are maximal. In fact we can give an answer for any PID not just any Eu-
clidean domain.

Definition 5.16. Let R be an integral domain. A nonzero element r ∈ R is said to
be irreducible if whenever r = a.b then exactly one of a or b is a unit (so that in
particular r is not a unit). We will say an element R ∈ R\({0} ∪ R×) is reducible if it is
not irreducible32.

Lemma 5.17. Let R be a PID, and let d ∈ R\{0}. Then the following are equivalent:
(1) R.d = 〈d〉 is a prime ideal.
(2) d is irreducible in R.
(3) R.d is a maximal ideal in R.

Proof. 1) implies 2): If d = a.b then as d ∈ R.d is prime we must have a ∈ R.d or
b ∈ R.d. By symmetry we may assume a ∈ R.d (and hence, since R.d is a proper
ideal and R.a ⊆ R.d we see that a is not a unit33). But then there is some r ∈ R with
a = r.d, and so d = a.b = (r.b).d and hence (1− r.b).d = 0 and so since R is an integral
domain and d , 0 we must have r.b = 1, that is b ∈ R×.

2) implies 3): Suppose that d is irreducible, and that R.d ⊆ I �R. Since R is a PID,
we must have I = R.a for some a ∈ R, and R.d ⊆ R.a shows that d = a.b for some
b ∈ R. But then as d is irreducible we must have one of a or b a unit. But if a is
a unit, then R.a = R, while if b is a unit d and a are associates and so generate the
same ideal, that is R.d = I. It follows R.d is a maximal ideal as claimed.

3) implies 1): We have already seen that in any ring a maximal ideal must be
prime.

�

31As an exercise, you might try to find an example of such a ring.
32On the one hand, since units have no prime factors, it seems reasonable to consider them not to

be reducible, but on the other hand, we do not want them to be irreducible: we will show any nonzero
element of a PID is a product of irreducibles in an essentially unique way, and this uniqueness would
not make sense if we allow units to be irreducible.

33Check you see that an element r of a ring R is a unit if and only if R.r = R.
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Remark 5.18. Note that the implication “1) implies 2)” holds in any integral do-
main, while “3) implies 1)” holds in any commutative ring. In a general ring d ∈ R
irreducible is equivalent to the ideal R.d being maximal amongst principal ideals in
R.

It is also worth pointing out that the Lemma reduces the problem classifying
prime and maximal ideals in a PID R to the problem of finding irreducible elements
in R. When R is sayC[t], this is easy: by the fundamental theorem of algebra a monic
polynomial p ∈ C[t] is irreducible if and only if p = t − λ for some λ ∈ C. On the
other hand if R = Q[t] then it is in general very difficult to decide if a polynomial
p ∈ Q[t] is irreducible. For the ring R = Z[i] it is possible to give a fairly complete
description of the irreducibles: see the problem sheet.

6. AN INTRODUCTION TO FIELDS.

In the previous section we saw how to construct C from R as the quotient C �

R[t]/〈t2 + 1〉. This example generalises substantially, and in this section we use the
quotientswe have developed to construct some examples of fields, and develop a
little of their basic properties. Our main tool is Lemma 5.17, which shows that if
f ∈ k[t] is any irreducible polynomial then k[t]/〈 f 〉 is a field, and moreover by the
above discussion it is clearly a k-vector space of dimension deg( f ).

Example 6.1. Suppose that E be a finite field (i.e. a field with finitely many el-
ements). Then E has characteristic p for some prime p ∈ N (since otherwise E
contains a copy of Z and is hence infinite). Thus E contains the subfield Fp � Z/pZ.
In particular we can view it as an Fp-vector space, and since it is finite, it must cer-
tainly be finite-dimensional. But then if d = dimFp(E), clearly there are pd elements
in E. Thus we see that a finite field must have prime-power order.

Let’s see an explicit example: Take for example p = 3. Then it is easy to check that
t2 + 1 is irreducible in F3[t] (you just need to check it does not have a root in F3, and
there are only 3 possibilities!). But then by our discussion above E = F3[t]/〈t2 + 1〉
is field of dimension 2 over F3, and hence E is a finite field with 9 elements.

More generally, if we can find an irreducible polynomial f of degree d in Fp[t]
the quotient Fp[t]/〈 f 〉will be a finite field of order pd. In the Problem sheets we will
show that for each d there is an irreducible polynomial of degree d in Fp[t], hence
showing that finite fields of any prime-power order exist. In fact there is only one
field (up to isomorphism) of any fixed prime-power order, but we will not prove
that in this course.

Definition 6.2. If E, F are any fields and F ⊆ E we call E a field extension of F and
write E/F. The inclusion of F into E gives E the structure of an F-vector space. If
E is finite dimensional as an F-vector space, we write [E : F] = dimF(E) for this
dimension and call it the degree of the field extension E/F.

Although it probably seems a very crude notion, as it forgets alot of the structure
of E, the degree of a field extension is nevertheless very useful. One reason for this
is the following Lemma:
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Lemma 6.3. Let E/F be a field extension and let d = [E : F] < ∞. Then if V is an E-vector
space, we may view V as an F-vector space, and V is finite dimensional as an F-vector space
if and only if it is as an E vector space, and moreover dimF(V) = [E : F] dimE(V).

Proof. Certainly if V is an E-vector space then by restricting the scalar multiplica-
tion map to the subfield F it follows that V is an F-vector space. Moreover, if V
is finite dimensional as an F-vector space it is so as an E-vector space (a finite F-
spanning set will certainly be a finite E-spanning set). Conversely, suppose that V
is a finite dimensional E-vector space. Let {x1, x2, . . . , xd} be an F-basis of E, and
let {e1, . . . , en} be an E-basis of V . To finish the proof it is enough to check that
{xie j : 1 ≤ i ≤ d, 1 ≤ j ≤ n} is an F-basis of V : Indeed if v ∈ V , then since {e1, . . . , en}

is an E-basis of V there are λi ∈ E (1 ≤ i ≤ n) such that v =
∑n

i=1 λiei. Moreover, since
{x1, . . . , xd} is an F-basis of E then for each λi there are elements µi

j (1 ≤ j ≤ d) such
that λi =

∑d
j=1 µ

i
jx j. Thus we have

v =

n∑
i=1

λiei =

n∑
i=1

( d∑
j=1

µi
jx j

)
ei =

∑
1≤i≤n,1≤ j≤d

µi
j(x jei),

whence the set {x jei : 1 ≤ i ≤ n, 1 ≤ j ≤ d} spans V as an F-vector space (and in
particular we have already established that V is finite dimensional as an F-vector
space). To see that this set is linearly independent, and hence establish the dimen-
sion formula, just notice that in the above equation, v = 0 if and only if each λi = 0
by the linear independence of the vectors {e1, . . . , en}, and λi = 0 if and only if each
µ

j
i = 0 for 1 ≤ j ≤ d by the linear independence of the x js. �

Example 6.4. Let V be a C vector space with basis {e1, . . . , en}. Then since {1, i} is an
R-basis of C, it follows {e1, . . . , en, ie1, . . . , ien} is an R-basis of V .

We record a particularly useful case of the above Lemma:

Corollary 6.5. (Tower Law) Let F ⊂ E ⊂ K be fields, then [K : F] is finite if and ony if both
degrees [E : F], [K : E] are, and when they are finite we have [K : F] = [E : F][K : E].

Proof. Apply the previous Lemma to the E-vector space K. �

We now use these tools to study finite extensions of Q inside the field of complex
numbers. The problem sheets also study finite fields, that is, finite extensions of
Z/pZ.

Definition 6.6. Let α ∈ C. We say that α is algebraic over Q if there is a field E which
is a finite extension of Q containing α. Otherwise we say that α is transcendental.
Notice that since the intersection of subfields is again a subfield34, given any set
T ⊆ C there is always a smallest subfield which contains it. This is called the field
generated by T , and is denoted Q(T ) (recall that any subfield of C contains Q, since
it contains Z and hence Q because it is the field of fractions of Z). In the case where
X has just a single element α we write Q(α) rather than Q({α}) and we say the field

34Just as for subspace of vector space, subrings of a ring, ideals in a ring etc.
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extension is simple. Note that an element α ∈ C is algebraic if and only if Q(α) is a
finite extension of Q. Slightly more generally, if F is any subfield of C and α ∈ Cwe
let F(α) = Q(F ∪ {α}) be the smallest subfield of C containing both F and α, and one
says α is algebraic over F if F(α)/F is a finite extension.

The next Lemma shows that simple extensions are exactly the kind of fields our
quotient construction builds.

Lemma 6.7. Suppose that E/F is a finite extension of fields (both say subfields of C) and
let α ∈ E. Then there is a unique monic irreducible polynomial f ∈ F[t] such that the
evaluation homomorphism φ : F[t] → E given by sending t to α induces an isomorphism
F(α) � F[t]/〈 f 〉.

Proof. The field K = F(α) is a finite extension of F since it is a subfield of E (and
hence a sub-F-vector space of the finite dimensional F-vector space E). Let d = [K :
F] = dimF(K). Since the set {1, α, α2, . . . , αd} has d + 1 elements, it must therefore
be linearly dependent, and so that there exist λi ∈ F (0 ≤ i ≤ d), not all zero, such
that

∑d
i=0 λiα

i = 0. But then if g =
∑d

i=0 λiti ∈ F[t]\{0}, we see that g(α) = 0. It
follows that the kernel I of the homomorphism φ : F[t]→ E given by φ(

∑m
j=0 c jt j) =∑m

j=0 c jα
j is nonzero. Now any nonzero ideal in F[t] is generated by a unique monic

polynomial, thus we have I = 〈 f 〉, where f is monic and f is uniquely determined
by φ (and so by α). By the first isomorphism theorem, the image S of φ is isomorphic
to F[t]/I. Now S is a subring of a field, so certainly an integral domain, hence
〈 f 〉 must be a prime ideal, and by our description of prime ideals in F[t] it must
therefore in fact be maximal, so that S is actually a field. Finally, any subfield of
C containing F and α must clearly contain S (as the elements of S are F-linear
combinations of powers of α) so it follows S = F(α). �

Definition 6.8. Given α ∈ C, the polynomial f associated to α by the previous
Lemma, that is, the irreducible polynomial for which Q(α) � Q[t]/〈 f 〉, is called the
minimal polynomial of α over Q. Note that our description of the quotient Q[t]/〈 f 〉
shows that [Q(α) : Q] = deg( f ), hence the degree of the simple field extension Q(α)
is just the degree of the minimal polynomial of α.

Remark 6.9. (Non-examinable) For simplicity let’s suppose that all our fields are sub-
fields of C. It is in fact the case that any finite extension E/F is simple, that is
E = F(α) for some α ∈ E (this is known as the primitive element theorem, which
is proved in next year’s Galois theory course). Moreover it turns out that given
any finite extension E/F of a field F there are in fact only finitely many fields K
between E and F. Neither statement is obvious, but you should think about how
the two facts are clearly closely related: if you accept the statement about finitely
many subfields between E and F then it is not hard to believe the primitive ele-
ment theorem – you should just pick an element of E which does not lie in any
proper subfield, and to see such an element exists one just has to show that the
union of finitely many proper subfields of E cannot be the whole field E. On the
other hand, if E/F is a finite field extension and we know that E = F(α) for some
α ∈ E, then we have E � F[t]/〈 f 〉 where f ∈ F[t] is the minimal polynomial of α
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over F. If K is a field with F ⊆ K ⊆ E, then certainly E = K(α) also, and it fol-
lows E � K[t]/〈g〉, where g ∈ K[t] is irreducible. But now you can check (using the
tower law) that if g =

∑k
i=0 citi ∈ K[t], then the cis actually generate K over F, that

is K = F({ci : 0 ≤ i ≤ k}), thus the the possible subfields of F(α) are all determined
already by the roots of f (as the cis are just polynomial functions of the roots).

Example 6.10. (1) Consider
√

3 ∈ C. There is a unique ring homomorphism
φ : Q[t] → C such that φ(t) =

√
3. Clearly the ideal 〈t2 − 3〉 lies in ker(φ),

and since t2 − 3 is irreducible in Q[t] so that 〈t2 − 3〉 is a maximal ideal, we
see that ker φ = 〈t2 − 3〉, and hence im(φ) � Q[t]/〈t2 − 3〉. Now the quotient
Q[t]/〈t2 − 3〉 is field, hence im(φ) is also. Moreover, any subfield of C which
contains

√
3 clearly contains im(φ), so we see that imφ = Q(

√
3). In particu-

lar, since the images of {1, t} form a basis of the quotient Q[t]/〈t2 − 3〉 by our
description of quotients of polynomial rings in the previous section, and
under the isomorphism induced by φ these map to 1 and

√
3 respectively,

we see that Q(
√

3) = {a + b
√

3 : a, b ∈ Q}, a degree two extension of Q. (Note
that one can also just directly check that the right-hand side of this equality
is a field – I didn’t do that because I wanted to point out the existence of the
isomorphism with Q[t]/(t2 − 3).)

(2) Exactly the same strategy35 shows that Q(21/3) is isomorphic to Q[t]/〈t3 − 2〉,
and henceQ(21/3) is a 3-dimensionalQ-vectors space with basis {1, 21/3, 22/3},
again given by the image of the standard basis we defined in the quotient
Q[t]/〈t3−2〉. Note that while its relatively easy to check directly that {a+b

√
3 :

a, b ∈ Q} is a subfield of C, it’s already noticeably harder to see directly that
{a + b21/3 + c22/3 : a, b, c ∈ Q} is a subfield of C: one needs to show that for
any a, b, c ∈ Q not all zero, the reciprocal (a + b21/3 + c22/3)−1 can be written
as a Q-linear combination of {1, 21/3, 22/3}.

Example 6.11. Now let T = {
√

3, 21/3}. Let us figure out what E = Q(T ) looks like.
Certainly it contains the subfields E1 = Q(

√
3) and E2 = Q(21/3). Using the tower

law and the above examples, we see that [E : Q] = [E : E1].[E1 : Q] = 2[E : E1], and
similarly [E : Q] = 3[E : E2]. It follows that 6 = l.c.m.{2, 3} divides [E : Q]. On the
other hand, consider E/E2. If

√
3 ∈ E2, then clearly E = E2, which would mean [E :

Q] = 3, which is not divisible by 6, so that we must have
√

3 < E2. But then arguing
exactly as we did above, there is a unique homomorphism E2[t] → C sending t to
√

2, with kernel 〈t2 − 3〉, a maximal ideal since
√

3 < E2, so that im(φ) must be the
field generated by

√
2 and 21/3, and thus [E : E2] = dimE2(E2[t]/〈t2 − 3〉) = 2, and so

[E : Q] = [E : E2][E2 : Q] = 2.3 = 6. Moreover, using the proof of the tower law,
you can check that the arguments above even show that E has a Q-basis given by
{2a/33b/2 : 0 ≤ a ≤ 2, 0 ≤ b ≤ 1}.

35We just need to check that t3 − 2 ∈ Q[t] is irreducible, but this follows because it does not have a
root in Q.
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7. UNIQUE FACTORISATION.

Throughout this section unless otherwise explicitly stated all rings are integral domains.
For the integers Z, any integer can be written as a product of prime numbers in

an essentially unique way. (See the Appendix for a direct proof of this, which may
be useful to review before reading this section.) We will show in this section that
this property holds for any Principal Ideal Domain.

Definition 7.1. Let R be an integral domain. If a, b ∈ R we say that a divides b, or a
is a factor of b, and write a|b, if there is some c ∈ R such that b = a.c. Note that we
can also write this in terms of the ideals a and b generate: in fact a|b if and only if
bR ⊆ aR, as you can see immediately from the definitions.

It also makes sense to talk about least common multiples and highest common
factors in any integral domain:

Definition 7.2. Let R be an integral domain. We say c ∈ R is a common factor of
a, b ∈ R if c|a and c|b, and that c is the highest common factor, and write c = h.c.f.(a, b),
if whenever d is a common factor of a and b we have d|c. In the same way, we can
define the least common multiple of a, b ∈ R: a common multiple is an element
k ∈ R such that a|k and b|k, and the least common multiple is a common multiple
which is a factor of every common multiple.

Note that these definitions can be rephrased in terms of principal ideals: c is a
common factor of a, b if and only if {a, b} ⊆ cR. An element g is the highest common
factor of {a, b} if and only if gR is minimal among principal ideals containing {a, b},
that is, if {a, b} ⊆ cR then gR ⊆ cR. Similarly the l is the least common multiple of
{a, b} if it lR is maximal among principal ideals which lie in aR ∩ bR.

Lemma 7.3. If a, b ∈ R where R is an integral domain, then if a highest common factor
h.c.f{a, b} exists, it is unique up to units. Similarly when it exists, the least common multi-
ple is also unique up to units. Moreover if R is a PID then the highest common factor and
least common multiple alway exist.

Proof. This is immediate from our description of the highest common factor in
terms of ideals. Indeed if g1, g2 are two highest common factors, then we must
have g1R ⊆ g2R (since g1 is a highest common factor and g2 is a common factor)
and symmetrically g2R ⊆ g1R. But then g1R = g2R, and so since R is an integral
domain this implies g1, g2 are associates, i.e. they differ by a unit. The proof for
least common multiples is analogous.

If R is a PID then the ideal 〈a, b〉 is principal, and so is clearly the minimal prin-
cipal idea containing a, b, and so any generator of it is a highest common factor.
Similarly Ra∩ Rb is principal and any generator of it will be a least common multi-
ple. �

Recall that an nonzero element c in an integral domain R is irreducible if whenever
c = a.b exactly one of a or b is a unit36, and that a nonzero element p ∈ R is prime if

36We also say an element a of an integral domain R is reducible if it is non-zero, not a unit, and not
irreducible, i.e. if we can write it as a product a = b.c where b, c ∈ R\{0} and neither b or c is a unit.
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the ideal Rp is prime. More explicitly p ∈ R is prime if whenever p|a.b either p|a or
p|b (or possibly both). Note that it follows by induction on m that if p is prime and
p|a1.a2 . . . am then p|a j for some j (1 ≤ j ≤ m). Moreover, by Lemma 5.17 and the
remark immediately following it, if R is an integral domain then prime elements
are always irreducible, and for elements of a PID the two notions are equivalent.

We now want to study factorisation in an integral domain, and in particular the
question of when one can uniquely factor elements into a product of irreducibles.
We formalise this with the following definition.

Definition 7.4. An integral domain R is said to be an unique factorisation domain (or
UFD) if every element of R\{0} is either a unit, or can be written as a product of
irreducible elements, and moreover the factorization into irreducibles is unique up
to reordering and units. More explicitly, if R is a UFD and r ∈ R is nonzero and
not a unit, then there are irreducible elements p1, . . . , pk such that r = p1 p2 . . . pk
and whenever r = q1q2 . . . ql is another such factorization for r, then k = l and the
q js can be reordered so that q j = u j p j, where u j ∈ R is a unit. If, as is normal, we
interpret an empty product in a ring to be 1, then we can rephrase this too include
the units in the assertion so that any nonzero element can be expressed as a product
of irreducibles uniquely up to order and units.

Lemma 7.5. Suppose that R is an integral domain. Then the following are equivalent:
(1) R is a UFD.
(2) Both of the following hold:

i) Every irreducible element is prime,
ii) Every nonzero non-unit a ∈ R can be written as a product of irreducibles.

(3) Every nonzero non-unit a ∈ R can be written as a product of prime elements.

Proof. We first show R is a UFD if and only if i) and ii) of (2) holds: Suppose that R
is a UFD and p is an irreducible. If p divides a.b, where a, b ∈ R, then if either a or
b is zero or a unit we are done. Otherwise by assumption they can be written as a
product irreducibles, say a = q1 . . . qk and b = r1 . . . rl for some k, l ≥ 1. But we have
a.b = p.d by definition, and writing d = s1 . . . sm as a product of irreducibles, by
uniqueness of the factorization of a.b into irreducibles we see that that up to units
p must be one of the qis or r js, and hence p divides a or b as required.

For the converse, we use induction on the minimal number M(a) of irreducibles
(or equivalently, primes) in a factorization of a into irreducibles. If M(a) = 1 then
a irreducible and uniqueness is clear by the definition of an irreducible element37.
Now suppose that M = M(a) > 1 and a = p1 p2 . . . pM = q1q2 . . . qk for irreducibles
pi, q j and k ≥ M. Now it follows that p1|q1 . . . qk, and so since p1 is prime there
is some q j with p1|q j. Since q j is irreducible, this implies that q j = u1 p1 for some
unit u1 ∈ R. Reordering the qls if needed we can assume j = 1, and so we see that
(u−1

1 p2) . . . pM = q2q2 . . . qk, and by induction it follows that k − 1 = M − 1, i.e. k = M,
and moreover the irreducibles occuring are equal up to reordering and units as
required.

37Or if you prefer, including units, we can start with M(a) = 0, so that a is already a unit.
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To see that condition (2) is equivalent to condition (3), note that since prime
elements are always irreducible, we need only check that irreducibles are prime.
But if a ∈ R is irreducible and a is a product of primes, say a = p1 p2 . . . pk, then
by the definition of irreducibility we must have k = 1 and hence a is prime as
required. �

We are now going to show that unique factorisation holds in any PID. By the
above, since we already know that irreducibles are prime in a PID, it is enough
to show that any element has some factorization into irreducibles. At first sight
this seems like it should be completely obvious: if an element a ∈ R is irreducible,
then we’re done, otherwise it has a factorisation a = b.c. where b, c are proper fac-
tors (that is, b|a and c|a and neither are associates of a). If either of b or c is not
irreducible then we can find a proper factorisation of them and keep going un-
til we reach a factorisation of a into irreducibles. The trouble with this argument
is that we need to show the process we describe stops after finitely many steps.
Again intuitively this seems clear, because the proper factors of a should be “get-
ting smaller”, but again a priori they might just keep getting “smaller and smaller”.
The key to showing that this cannot happen is to rephrase things in terms of ideals:
Recall that b|a if and only if aR ⊆ bR and b is a proper factor of a (i.e. b divides a
and is not an associate of a) if and only if aR ( bR, that is, aR is strictly contained in
bR. Thus if R, our PID, contained an element which could be factored into smaller
and smaller factors this would translate this into a nested sequence of ideals each
of which strictly contained the previous ideal. The next Proposition shows that this
cannot happen in a PID.

Proposition 7.6. Let R be a PID and suppose that {In : n ∈ N} is a sequence of ideals such
that In ⊆ In+1. Then the union I =

⋃
n≥0 In is an ideal and there exists an N ∈ N such that

In = IN = I for all n ≥ N.

Proof. Let I =
⋃

n≥1 In. Given any two elements p, q ∈ I, we may find k, l ∈ N such
that p ∈ Ik and q ∈ Il. It follows that for any r ∈ R we have r.p ∈ Ik ⊂ I, and taking
n = max{k, l} we see that r, s ∈ In so that r + s ∈ In ⊂ I. It follows that I is an ideal.
Since R is a PID, we have I = 〈c〉 for some c ∈ R. But then there must be some N
such that c ∈ IN , and hence I = 〈c〉 ⊆ IN ⊆ I, so that I = IN = In for all n ≥ N as
required. �

Remark 7.7. A ring which satisfies the condition that any nested ascending chain
of ideals stabilizes is called a Noetherian ring. The condition is a very important
“finiteness” condition in ring theory. (Note that the proof that the chain of ideals
stabilizes generalises readily if you just know every ideal is generated by finitely
many elements, rather than a single element.) Polynomial rings in any number of
indeterminates have this property by a theorem know as Hilbert’s Basis Theorem,
which you can learn more about in the Commutative Algebra course in Part B.

Theorem 7.8. Let R be a PID. Then R is a UFD.

Proof. As discussed above, it follows from the fact that irreducibles are prime in
a PID and Lemma 7.5 that we need only show any element can be factored as a
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product of irreducible elements. Thus suppose for the sake of a contradiction that
there is some a = a1 ∈ R which is not a product of irreducible elements. Clearly a
cannot be irreducible, so we may write it as a = b.c where neither b nor c is a unit.
If both b and c can be written as a product of prime elements, then multiplying
these expressions together we see that a is also, hence at least one of b or c cannot
be written as a product of prime elements. Pick one, and denote it a2. Note that
if we set Ik = 〈ak〉 (for k = 1, 2) then I1 ( I2. As before a2 cannot be irreducible, so
we may find an a3 such that I2 = 〈a2〉 ( 〈a3〉 = I3. Continuing in this fashion we
get a nested sequence of ideals Ik each strictly bigger than the previous one. But by
Proposition 7.6 this cannot happen if R is a PID, thus no such a exists.

�

Remark 7.9. (Non-examinable). The annoying “up to units” qualification for prime
factorisation in a PID vanishes if you are willing to live with ideals rather than
elements: in a PID any proper ideal I can be written as a product of nonzero
prime ideals I = P1P2 . . . Pk where the prime ideals occuring in this factorisation
are unique up to reordering. Indeed this is just the statement that two elements of
an integral domain are associates if and only if they generate the same principal
ideal. However, if you do Algebraic Number Theory next year you’ll see this idea
extended to rings where unique factorization of elements fails (in particular the
rings are not PIDs!) but where nevertheless unique factorization of ideals contin-
ues to hold.

Remark 7.10. (Again non-examinable, but perhaps illuminating.) In special cases the
proof that any element is a product of irreducibles can be simplified: more pre-
cisely, suppose that R is an Euclidean domain with a norm N which satisfies the
condition that N(a) ≤ N(a.b) for all a, b ∈ R\{0}. We will call38 such a norm weakly
multiplicative. (This holds for example if the norm satisfies something like N(a.b) =

N(a).N(b) or N(a.b) = N(a) + N(b).) In this case we can replace the use of Proposition
7.6 with a more concrete inductive argument. In order to make the induction work
however, we will need to know that when we factorise an element as a product of
two proper factors (i.e. so neither factor is a unit) then the norms of the factors are
strictly smaller than the norm of the element. Of course if have an explicit descrip-
tion of the norm (as we do say for k[t] or Z) this may be easy to check directly, but
it is in fact a consequence of the weakly multiplicative property. More precisely we
have:
Claim: Let R be an ED with a weakly multiplicative norm. If a, b ∈ R\{0} satisfy b|a
and N(a) = N(b) then a and b are associates.
Proof : To prove the claim, suppose that N(a) = N(b) and a = b.c. We must show
that c is a unit. By the division algorithm we have b = q.a + r where r = 0 or
N(r) < N(a) = N(b). Substituting a = b.c and rearranging we get b(1 − q.c) = r, and

38I don’t know if there is a standard name for this property – “multiplicative” would suggest
something like N(a.b) = N(a).N(b). “Submultiplicative” might be another reasonable term, but it
sounds pretty awful.
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hence if r , 0 then N(r) = N(b.(1−q.c)) ≥ N(b) = N(a) which is a contradiction. Thus
r = 0 and so since b , 0, 1 − q.c = 0 and so c is a unit as required.

We now show how, in any Euclidean Domain R with a weakly multiplicative
norm a nonunit a ∈ R\{0} is a product of irreducibles using induction on N(a) the
norm. Note that N(1) ≤ N(1.a) = N(a) for all a ∈ R\{0}, so that the minimum value
of N is N(1). But by what we have just done, if N(a) = N(1) then a is a unit (since 1
divides any a ∈ R). If N(a) > N(1) then either a is an irreducible element, in which
case we are done, or a = b.c, where neither b nor c is a unit. But then by the claim
we must have N(b),N(c) < N(a), and hence by induction they can be expressed as
a product of irreducibles and so multiplying these expressions together we see so
can a. It follows every a ∈ R\{0} is unit or a product of irreducibles as required.

A ring may be a UFD without being a PID: in fact we will now show that Z[t] is
a UFD, even though it is not a PID. The idea is to use the fact that, since Z and Q[t]
are PIDs, unique factorisation holds in each. We can then show Z[t] is a UFD by
studying the inclusion of Z[t] into Q[t]. The next definition and Lemma are the key
to our understanding of factorisation in Z[t].

Definition 7.11. If f ∈ Z[t] then define the content c( f ) of f to be the highest com-
mon factor of the coeficients of f . That is, if f =

∑n
i=0 aiti then we set c( f ) =

h.c.f.{a0, a1, . . . , an}. Note that in a general integral domain the highest common
factor is only defined up to units, but in the case of Z if we insist c( f ) > 0 then it is
unique (since the units in Z are just {±1}). In particular, given f ∈ Z[t] nonzero, c( f )
is the unique positive integer such that f = c( f ). f1 where f1 has content 1, that is,
its coefficients generate the whole ring Z.

Lemma 7.12. (Gauss). Let f , g ∈ Z[t]. Then c( f .g) = c( f ).c(g).

Proof. Suppose first f , g ∈ Z[t] have c( f ) = c(g) = 1. Then let p ∈ N be a prime. We
have for each such prime a homomorphism Z[t] → Fp[t] given by φp(

∑n
i=0 aiti) =∑n

i=0 āiti, where āi denotes ai + pZ ∈ Fp. It is immediate that ker(φp) = pZ[t], so that
we see p|c( f ) if and only if φp( f ) = 0. But since Fp is a field, Fp[t] is an integral
domain, and so as φp is a homomorphism we see that

p|c( f .g) ⇐⇒ φp( f .g) = 0 ⇐⇒ φp( f ).φp(g) = 0
⇐⇒ φp( f ) = 0 or φp(g) = 0 ⇐⇒ p|c( f ) or p|c(g),

whence it is clear that c( f .g) = 1 if c( f ) = c(g) = 1.
Now let f , g ∈ Z[t], and write f = a. f ′,g = b.g′ where f ′, g′inZ[t] have c( f ′) =

c(g′) = 1, (so that c( f ) = a, c(g) = b). Then clearly f .g = (a.b).( f ′g′) and since
c( f ′g′) = 1 it follows that c( f .g) = c( f ).c(g) as required.

�

Alternative proof. If you found the above proof of the fact that c( f .g) = 1 if c( f ) =

c(g) = 1 a bit too slick, then a more explicit version of essentially the same argument
goes as follows: Let f =

∑n
i=0 aiti and39 g =

∑n
i=0 biti, and write f .g =

∑2n
k=0 cktk.

39Note that so long as we do not assume that both ba and an are nonzero we may take the same
upper limit in the sums.
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Suppose that d divides all the coefficients of f .g and d is not a unit. Since c( f ) = 1,
there must be a smallest k such that d does not divide ak and similarly since c(g) = 1
there is a smallest l such that d does not divide bl. Consider

ck+l =
∑

i+ j=k+l

aib j,

Now d divides every term on the right-hand side except for akbl, since every other
term has one of i < k or j < l, but then d does not divide the sum, contradicting the
assumption that d divides ck+l. Thus we have a contradiction and thus c( f .g) = 1 as
required.

We can now extend the definition of content to arbitrary nonzero elements of
Q[t].

Lemma 7.13. Suppose f ∈ Q[t] is nonzero. Then there is an unique α ∈ Q>0 such that
f = α f ′ where f ′ ∈ Z[t] and c( f ′) = 1. We write c( f ) = α. Moreover, if f , g ∈ Q[t] then
c( f .g) = c( f ).c(g).

Proof. Let f =
∑n

i=0 aiti where ai = bi/ci for bi, ci ∈ Z and h.c. f {bi, ci} = 1 for all i,
0 ≤ i ≤ n. Pick d ∈ Z>0 such that dai ∈ Z for all i, (1 ≤ i ≤ n) so that d f ∈ Z[t] (for
example you can take d = l.c.m.{ci : 0 ≤ i ≤ n} or

∏n
i=0 ci). Set c( f ) = c(d. f )/d (where

the righthand side is already defined because d. f ∈ Z[t]). Then f = c( f ). f ′ where
f ′ = (d. f )/c(d. f ) is clearly a polynomial in Z[t] with content one. To check c( f ) is
well-defined we must show that if f = α1. f1 = α2. f2 where f1, f2 have content one
and α1, α2 ∈ Q>0 then α1 = α2. But writing αi = mi/ni for positive integers mi, ni,
we find n2.(m1. f1) = n1.(m2 f2) ∈ Z[t]. Taking content and using the trivial fact that if
n ∈ Z\{0} ⊂ Z[t] then c(d) = |d|, we see that

c(n2.(m1 f1)) = c(n2).c(m1 f1) = n2.m1, c(n1.(m2 f2)) = c(n1).c(m2 f2) = n1m2.

Equating it follows α1 = m1/n1 = m2/n2 = α2 as required.
It is now easy to check multiplicativity: if f , g ∈ Q[t]/\{0} then if d1, d2 ∈ Z are

such that d1. f , d2g ∈ Z[t] then clearly d1d2.( f .g) ∈ Z[t] so that

c( f .g) =
c(d1d2 f .g)

d1d2
=

c((d1 f ).(d2g))
d1.d2

=
c(d1 f )

d1
.
c(d2.g)

d2
= c( f ).c(g),

as required.
�

Remark 7.14. Note in particular it follows immediately from the previous Lemma
that if f ∈ Q[t]\{0} then f ∈ Z[t] if and only if c( f ) ∈ Z.

We now relate factorization in Z[t] and Q[t], and obtain a description of some
prime elements in Z[t].

Lemma 7.15. (1) Suppose that f ∈ Z[t] ⊂ Q[t] is nonzero, and that f = g.h where
g, h ∈ Q[t]. Then there exist α ∈ Q such that (α.g), (α−1.h) ∈ Z[t]. Thus f =

(α.g)(α−1h) is a factorisation of f in Z[t].
(2) Suppose that f ∈ Q[t] is irreducible and c( f ) = 1. Then f is a prime element of
Z[t].
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(3) Let p ∈ Z be a prime number. Then p is a prime element in Z[t].

Proof. For the first part, by Lemma 7.13 we may write g = c(h).g1 and h = c(h).h1
where g1, h1 ∈ Z[t] have content 1. Then c( f ) = c(g)c(h) so that as f ∈ Z[t] we have
c(g).c(h) ∈ Z. Setting α = c(h) we see that f = (α.g).(α−1.h) where α.g = (c(g).c(h)).g1
and α−1h = h1 both lie in Z[t] as required.

For the second part, first note that if f ∈ Q[t] has c( f ) = 1 then by definition f
must lie in Z[t] (and has content 1). To see that such an f is prime, we need to show
that if g, h ∈ Z[t] and f |g.h in Z[t] then f |g or f |h in Z[t]. Now if f |g.h in Z[t], certainly
it does so in Q[t]. Since Q[t] is a PID, irreducibles are prime and so either f |g or f |h
in Q[t]. Suppose that f |g (the argument being identical for h). Then we have g = f .k
for some k ∈ Q[t]. Now by Lemma 7.13 we may write k = c(k).k′ where k′ ∈ Z[t],
and moreover by the same lemma, c(g) = c( f ).c(k) = c(k) since c( f ) = 1. But g ∈ Z[t],
hence c(g) = c(k) ∈ Z and hence k ∈ Z[t] so that f divides g in Z[t] as required.

For the final part, we have already seen that the homomorphism φp : Z[t]→ Fp[t]
has kernel pZ[t], and so since Fp[t] is an integral domain, the ideal pZ[t] is prime,
that is, p is a prime element of Z[t].

�

Theorem 7.16. The ring Z[t] is a UFD.

Proof. Since Z[t] is an integral domain (as Z is), by Lemma 7.5 it is enough to show
that any element of Z[t] is a product of primes. Let f ∈ Z[t]. We may write f = a. f ′

where c( f ′) = 1, and since Z is a UFD we may factorise a into a product of prime
elements of Z which we have just seen are prime in Z[t]. Thus we may assume
c( f ) = 1. But then viewing f as an element of Q[t] we can write it as a product of
prime elements in Q[t], say f = p1 p2 . . . pk. Now using Lemma 7.13, each pi can be
written as aiqi where ai ∈ Q and qi ∈ Z[t] and c(qi) = 1. But then by the Lemma
7.15, qi is prime in Z[t], and f = (a1 . . . ak)q1 . . . qk. Comparing contents we see that
(a1 . . . ak) = 1 and so we are done. �

Remark 7.17. It is easy to see from this that in fact all primes in Z[t] are either primes
in Z or primes (equivalently irreducibles) in Q[t] which have content 1.

Remark 7.18. In fact one can show directly (see the problem set) that if R is a UFD
then highest common factors exist (that is, given elements a1, . . . , an ∈ R there is an
element d such that d|ai for all i, (1 ≤ i ≤ n) and if c|ai for all i also, then c|d). It
follows that if R is a UFD then we can define the content of a nonzero element of
R[t] to be the highest common factor of its coefficients just as we did for Z[t]. This
observation implies the following theorem, whose proof is not examinable.

Theorem 7.19. If R is a UFD then the polynomial ring R[t] is also a UFD. More generally,
if R is a UFD then R[t1, . . . , tn] the ring of polynomials in n variables with coefficients in R,
is a UFD.

Proof. (Nonexaminable.) The proof follows the same strategy as for Z[t]: if f ∈ Rt]
then as saw in the previous remark, the content of f makes sense (though now we
cannot use positivity to make it unique, so it is only defined up to units). Let F be
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the field of fractions of R. Then F[t] is a PID and hence a UFD, and the content lets
us understand the relation of factorization in R[t] to factorization in F[t] using the
analogue of Gauss’s Lemma. You can then check that the primes in R[t] are then
the primes in R and the irreducibles in F[t] with content 1, and the fact that any
element of R[t] has a prime factorization then follows exactly as for Z[t].

For the final part, since R[t1, . . . , tn] = S [tn] where S = R[t1, . . . , tn−1] the result
follows from the first part and induction on n. �

The previous theorem shows that, for example, Q[x, y] is a UFD. It is not hard to
see that neither Z[t] nor Q[x, y] are PIDs40, so the class of rings which are UFDs is
strictly larger than the class of PIDs. In fact not every PID is a Euclidean domain
either, so there are strict containments: EDs ( PIDs (UFDs. Finding a PID which is
not a Euclidean domain is a bit subtle, so we wont do it here, but see the Appendix.

7.1. Irreducible polynomials. In this section we develop some techniques for de-
ciding when a polynomial f ∈ Q[t] is irreducible. By what we have done above, if
f ∈ Q[t] is irreducible, we may write f = c( f ).g where g ∈ Z[t] has content 1 and
is a prime in Z[t]. Since f and g are associates in Q[t] it follows that to understand
irreducible elements in Q[t] it is enough to understand the prime elements in Z[t]
of positive degree (or equivalently, the irreducibles f ∈ Q[t] with c( f ) = 1.)

This is useful for the following reason: Recall that for any prime p ∈ Z we have
the homomorphism41 φp : Z[t] → Fp[t]. This allows us to transport questions about
factorisation in Z[t] to questions about factorisation in Fp[t]: If f ∈ Z[t] with c( f ) = 1,
and f = g.h, then g and h have content 1. In particular, if f = g.h is a factorization of
f with neither of g, h a unit, then both g and h have positive degree. If we pick p a
prime not dividing the leading coefficient of f , then deg(φp( f )) = deg( f ) and so42 we
must have deg(φp(g)) = deg(g) and deg(φp(h)) = deg(h), and hence we obtain a proper
factorization of φp( f ). It follows that if φp( f ) is irreducible in Fp[t], then f must be
irreducible in Z[t]. Since the rings Fp[t] are “smaller” than either Z[t] or Q[t] this
can give us ways of testing irreducibility (indeed notice since the coefficient field is
finite, it is in principle a finite check to see if a given element in Fp[t] is irreducible).

Example 7.20. Suppose that f = t3 − 349t + 19 ∈ Z[t]. If f is reducible in Q[t], it is
reducible in Z[t] and hence its image under φp in Fp[t] will be reducible. But since
f has degree 3 it follows it is reducible if and only if it has a degree 1 factor, and
similarly for its image in Fp[t], which would therefore mean it has a root in Fp. But
taking p = 2 we see that φ2( f ) = f̄ = t3 + t + 1 ∈ F2[t] and so it is easy to check that
f̄ (0) = f̄ (1) = 1 ∈ F2, so f̄ does not have a root, and hence f must be irreducible.
Note on the other hand t2 +1 is irreducible in Z[t] but in F2[t] we have t2 +1 = (t+1)2,
so φp( f ) can be reducible even when f is irreducible.

40In fact for Z[t] this follows from Lemma 7.15 – do you see why?
41Note that there is no homomorphism from Q[t] to Fp[t] for any prime p. This is why we have to

pass through Z[t].
42Because the degree of a product of polynomials is the sum of the degrees whenever the coeffi-

cient ring is an integral domain.
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Lemma 7.21. (Eisenstein’s criterion.) Suppose that f ∈ Z[t] has c( f ) = 1, and f =

antn + an−1tn−1 + . . . a1t + a0. Then if there is a prime p ∈ Z such that p|ai for all i,
0 ≤ i ≤ n− 1 but p does not divide an and p2 does not divide a0 then f is irreducible in Z[t]
and Q[t].

Proof. Since c( f ) = 1, we have already seen that irreducibility in Z[t] and Q[t] are
equivalent. Let φp : Z[t] → Fp[t] be the quotient map. Suppose that f = g.h was
a factorisation of f in Z[t] where say 0 < deg(g) = k < n. Then we have φp( f ) =

φp(g).φp(h). By assumption φp( f ) = āntn (where for m ∈ Zwe write m̄ for m + pZ, the
image of m in Fp). Since Fp[t] is a UFD, t is irreducible, and ān is a unit, it follows
that up to units we must have φp(g) = tk, φp(h) = tn−k. But then (since k and n− k are
both positive) the constant terms of both g and h must be divisible by p, and hence
a0 must be divisible by p2, contradicting our assumption. �

Example 7.22. This gives an easy way to see that 21/3 < Q: if it was t3 − 2 would
be reducible, but we see this is not the case by applying Eisenstein’s criterion with
p = 2. (It also gives a proof that

√
2,
√

3 are irrational).

One can also use Eisenstein’s Criterion in more cunning ways. For example, it
might be that the Criterion does not apply to f (t) but it does to f (t + 1), as the next
example shows:

Example 7.23. Suppose that p ∈ N is prime, and f = 1 + t + . . . + tp−1 ∈ Z[t]. Then
we claim f is irreducible. Let g = f (t + 1). Then if g was reducible, say g = h1.h2 it
would follow that f (t) = g(t − 1) = h1(t − 1)h2(t − 1) is reducible, and similarly if g is
irreducible so is f . Thus f is irreducible if and only if g is. But as f = tp−1

t−1 we see
that

g = t−1((t + 1)p − 1
)

=

p−1∑
i=0

(
p

i + 1

)
ti,

But it is well know that p divides
(

p
i+1

)
for any i, 0 ≤ i ≤ p − 2, while the constant

term
(

p
1

)
= p is not divisible by p2, so Eisenstein’s Criterion shows g and hence f is

irreducible.

Remark 7.24. (Non-examinable.) You might be worried43 about what “substituting
t + 1 for t” means for polynomials with coefficient in an arbitrary ring where we
cannot think of them as functions. (In the case of Z[t] this is not a problem, since
Z[t] embeds into Q[t] which can be viewed as a subring of the ring of functions
from Q to itself since Q is infinite.) In fact we’ve done enough to make sense of
this already: Recall that in Lemma 2.9 we showed that for a polynomial ring R[t],
if we are given a homomorphism φ : R→ S and an element of s ∈ S , then there is a
unique homomorphism from ψ : R[t] → S taking t to s and r ∈ R to φ(r). It follows
that there is a unique homomorphism ψ : R[t] → R[t] which is the identity44 on R

43You might also not be worried, I don’t know which group is better off in life in general.
44In the case R = Z, the identity is the only ring homomorphism from Z to itself so in that case you

don’t need to explicitly require this.
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and sends t to t + 1. Since the homomorphism given by sending t 7→ t − 1 is clearly
an inverse to ψ we see that ψ is an isomorphism from Z[t] to itself. It follows that f
is irreducible if and only if ψ( f ) is.

In fact the above trick could be generalized a little: the important point was that,
as well as the homomorphisms φp : Z[t] → Fp[t], we found an isomorphism from
Z[t] to itself given by sending t 7→ t + 1. If ψ : Z[t] → Z[t] was any isomorphism
the we could similarly test the irreducibility of an element using the compositions
φp ◦ψ. However, this turns out to be not much of a generalization, as you can see if
you find all isomorphisms of Z[t] with itself.

8. MODULES: DEFINITION AND EXAMPLES.

As usual, all rings are assumed to be commutative unless the contrary is explicitly stated.

In this section we begin the study of “linear algebra over rings”. Recall a vector
space is just an abelian group with an action of a field of “scalars” obeying some
standard rules. The definition of a module is exactly the same, except now we
allow our scalars to belong to an arbitrary ring, rather than insisting they belong to
a field. Formally, we say the following:

Definition 8.1. Let R be a ring with identity 1R. A module over R is an abelian
group (M,+) together with a multiplication action a : R×M → M of R on M written
(r,m) 7→ r.m which satisfies:

(1) 1R.m = m, for all m ∈ M;
(2) (r1.r2).m = r1.(r2.m), for all r1, r2 ∈ R, m ∈ M
(3) (r1 + r2).m = r1.m + r2.m for all r1, r2 ∈ R and m ∈ M;
(4) r.(m1 + m2) = r.m1 + r.m2 for all r ∈ R and m1,m2 ∈ M.

Remark 8.2. Just as with vector spaces, we write the addition in the abelian group
M and the addition in the ring R as the same symbol “+”, and similarly the multi-
plication action of R on M is written in the same way as the multiplication in the
ring R, since the axioms ensure that there is no ambiguity in doing so.

Remark 8.3. Note that the definition makes perfectly good sense for a noncommu-
tative ring (when it would normally be described as a left module since the action
of the ring is on the left). Next year’s course on Representation Theory will study
certain noncommutative rings called group algebras, and modules over them. In
this course we will focus on modules over integral domains and all our main re-
sults will be for modules over a PID, though even then, in some cases we will only
give proofs for the case where our ring is a Euclidean domain.

Lemma 8.4. Let M be an abelian group and R a ring.
i) The set End(M) = Hom(M,M) of group homomorphisms from M to itself is nat-

urally a (in general noncommutative) ring where addition is give pointwise and
multiplication is given by composition.

ii) Giving M the structure of an R-module, that is an action R×M → M, is equivalent
to giving a ring homomorphism φ : R→ End(M).
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Proof. For the first part, since M is abelian, if f1, f2 ∈ End(M) then f1 + f2 is again a
group homomorphism, and clearly f1 + f2 = f2 + f1 so addition in End(M) is com-
mutative. Composition of functions gives End(M) a multiplication which it is easy
to check distributes over addition, thus End(M) is a (not necessarily commutative)
ring.

For the second part, if the action map a : R × M is denoted by (r,m) 7→ r.m as
usual, then the equation φ(r)(m) = r.m defines φ in terms of a and conversely. It is
routine to check the equivalences – property (4) of an action shows that m 7→ r.m
is a homomorphism of the abelian group M, property (1) corresponds to requir-
ing φ(1R) = 1End(M), property (2) to the compatibility of φ with multiplication, and
property (3) to the compatibility of φ with addition. �

Remark 8.5. You should compare this Lemma with the corresponding result from
group actions: if G is a group and X is a set, then giving an action of G on X is the
same as giving a group homomorphism from G to the group of permutations of the
set X (i.e. the group of bijections from X to itself). You could define vector spaces
this way, but in Prelims we tell you what a vector space is before we tell you what
a group action is (or indeed what a ring is!)

Example 8.6. Let’s give a few examples:

(1) As mentioned above, if R is a field, the definition is exactly that of a vector
space over R, so modules over a field are just vector spaces over that field.

(2) At the other end of the spectrum in a sense, if A is an abelian group, then it
has a natural structure of Z-module: if n is a positive integer, then set n.a =

a + a + . . .+ a (n times) and if n is a negative integer, set n.a = −(a + a + . . .+ a)
(where this time we add a to itself −n times). It’s easy to check this makes
A a Z-module, and moreover, the conditions (1), (2), (3), (4) in fact force this
definition on us, so that this Z-module structure is unique45. Thus we see
that Z-modules are just abelian groups.

(3) Suppose that R is a ring. Then R is a module over itself in the obvious way.
(4) If R is a ring and I is an ideal in R, then it follows directly from the definitions

that I is an R-module.
(5) Again if I is an ideal in R then R/I is naturally an R-module where the mul-

tiplication action is given via the quotient homomorphism q : R→ R/I, that
is, if m ∈ R/I and r ∈ R we set r.m = q(r).m (the multiplication on the right-
hand side being inside the ring R/I). Indeed the properties (1), (2) (3) and
(4) all follow immediately from the fact that q is a ring homomorphism.

(6) Generalising the previous example somewhat, if φ : R → S is a homomor-
phism of rings, and M is an S -module, then we can give M the structure of
an R-module by setting r.m = φ(r).m (where the action on the right-hand side
comes from the S -module structure. Thus for example any if I is an ideal of

45Writing down all the details of a proof of this is very similar to the exercise in the problem sheets
in which you showed that given any ring R there is a unique homomorphism from Z to R. The reason
for this is because the module structure corresponds to the unique ring homomorphism Z→ End(M).
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R then any R/I-module automatically has the structure of an R-module via
the quotient map q : R→ R/I.

(7) Generalising the example of R being an R-module over itself in a slightly
different way, given our ring R and a positive integer n, we may consider
the module Rn = {(r1, r2, . . . , rn) : ri ∈ R} of n-tuples of elements of R (written
as row vectors or column vectors – different books prefer different conven-
tions), where the addition and the multiplication by scalars is done compo-
nentwise. (This is exactly the way we define the vector space Rn for the field
R). Such a module is an example of a free module over R.

(8) To give a more substantial example, suppose that V is a vector space over a
field k and φ : V → V is a linear map. Then we can make V into a k[t]-module
by setting p(t).v = p(φ)(v) for any v ∈ V and p(t) ∈ k[t] (that is just evaluate
the polynomial p on the linear map φ). Indeed a homomorphism from k[t]
to Endk(V) is uniquely determined by its restriction to the scalars k and the
image of t. Here we define φ by the conditions that it sends the complex
number λ ∈ k ⊆ k[t] to λ.idV , and t to φ. The fact that the assignment f .v =

φ( f )(v) for v ∈ V, f ∈ k makes V into a k[t]-module follows directly from the
fact that φ is a homomorphism. Conversely, if we are given a k[t]-module
M, we can view it as a k-vector space where the multiplication by scalars is
given to us by viewing the elements of k as degree zero polynomials. The
action of multiplication by t is then a k-linear map from M to itself. Thus
k[t]-modules are just k-vector spaces equipped with an endomorphism.

8.1. Submodules, generation and linear independence.

Definition 8.7. If M is an R-module, a subset N ⊆ M is called a submodule46 if it is
an abelian subgroup of M and whenever r ∈ R and n ∈ N then r.n ∈ N.

If {Ni : i ∈ I} is a collection of submodules then their intersection
⋂

i∈I Ni is also a
submodule. This allows us to define (just as we did for ideals, subrings, subfields
etc.) for a set X ⊂ M the submodule generated by X,

Definition 8.8. If X is any subset of an R-module M then the submodule generated
or spanned by X is defined to be:

〈X〉 =
⋂
N⊇X

N,

where N runs over the submodules of M which contain X. Explicitly, it is the subset
R.X = {

∑k
i=1 rixi : ri ∈ R, xi ∈ X} (where this is by convention understood to be {0} if

X = ∅). The proof is exactly the same47 as the proof for ideals in a ring.

If N1,N2 are submodules then the submodule they generate is their sum N1+N2 =

{m + n : m ∈ N1, n ∈ N2}. To prove this one first checks that the righthand side
is indeed a submodule and then that any submodule containing N1 and N2 must

46Note the definitions in this subsection are exactly the same as for the case of a vector space.
47As should come as no surprise given example (3) above: a subset of R viewed as an R-module

is a submodule if and only if it is an ideal.
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contain all the elements of N1 + N2 (and these two steps both follow directly from
the definitions). Note that this generalises the fact which we have already seen that
the ideal generated by the union of two ideals I ∪ J is just their sum I + J.

Definition 8.9. If M is a module over R, we say a set S ⊆ M is linearly independent if
whenever we have an equation r1s1 + r2s2 + . . . rksk = 0 for ri ∈ R, si ∈ S (1 ≤ i ≤ k)
we have r1 = r2 = . . . rk = 0. We say that a set S is a basis for a module M if and only
if it is linearly independent and it spans M. Any module which has a basis is called
a free module. Finally we say that a module is finitely generated if it is generated by
some finite subset.

9. QUOTIENT MODULES AND THE ISOMORPHISM THEOREMS.

Just as for vector spaces, given a module together with a submodule there is
a natural notion of a quotient module. (If you’ve understood quotients of rings
and quotients of vectors space, everything here should look very familiar, as the
constructions mimics those cases, in fact they are word for word the same as for
quotient vector spaces).

Definition 9.1. If N is a submodule of M, then in particular it is a subgroup of
an abelian group, so we can form the quotient M/N. The condition that N is a
submodule then is precisely what is needed for the multiplication on M to induce a
module structure on M/N: If r ∈ R and m + N ∈ M/N then define r.(m + N) = r.m + N.
This is well defined because if m1 + N = m2 + N we have m1 − m2 ∈ N, and so
r.(m1 − m2) ∈ N, whence r.m1 + N = r.m2 + N. The module M/N is called the quotient
module of M by N.

Definition 9.2. There is also a natural analogue of linear maps for modules: if
M1,M2 are R-modules, we say that φ : M1 → M2 is an R-module homomorphism (or
just homomorphism) if:

(1) φ(m1 + m2) = φ(m1) + φ(m2), for all m1,m2 ∈ M1,
(2) φ(r.m) = r.φ(m), for all r ∈ R,m ∈ M1,

that is, φ respects the addition and multiplication by ring elements. An isomor-
phism of R-modules is a homomorphism which is a bijection (and you can check,
just as for groups, that this implies the inverse map of sets is also a homomor-
phism of modules). Just as the kernel and image of a linear map between vec-
tor spaces are subspaces, it is easy to see that ker(φ) = {m ∈ M1 : φ(m) = 0} and
im(φ) = {φ(m) : m ∈ M1} are submodules of M1 and M2 respectively.

Remark 9.3. It is easy to check that if M1,M2 are R-modules then φ : M1 → M2 is an
R-module homomorphism if and only if φ(v + tw) = φ(v) + tφ(w) for all v,w ∈ M1 and
t ∈ R.

Example 9.4. When R is a field, module homomorphisms are exactly linear maps.
When R = Z, a Z-module homomorphism is just a homomorphism of the abelian
groups. As another important example, it is easy to see that if M is an R-module
and N is a submodule of M then the definition of the module structure on M/N
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ensures precisely that the map q : M → M/N given by q(m) = m + N is a (surjective)
module homomorphism.

Lemma 9.5. (Submodule correspondence:) Let M be an R-module and N a submodule. Let
q : M → M/N be the quotient map. If S is a submodule of M then q(S ) is a submodule of
M/N, while if T is a submodule of M/N then q−1(T ) is a submodule of M. Moreover the
map T 7→ q−1(T ) gives an injective map from submodules of M/N to the submodules of
M which contain N, thus submodules of M/N correspond bijectively to submodules of M
which contain N.

Proof. The proof works precisely the same way as the proof of the correspondence
between ideals given by a surjective ring homomorphism φ : R → S . Indeed that
result is a special case of this Lemma, since φ makes S into an R-module, and ideals
in S are precisely the R-submodules of S since φ is surjective.

To check that q(S ) and q−1(T ) are submodules of N and M respectively follows
directly from the definitions. We give the argument for q−1(T ), the argument for
q(S ) follows exactly the same pattern. If m1,m2 ∈ q−1(T ) then q(m1), q(m2) ∈ T and
it follows since T is a submodule that q(m1) + q(m2) = q(m1 + m2) ∈ T which says
precisely that m1 + m2 ∈ q−1(T ). Similarly if r ∈ R then q(r.m1) = r.q(m1) ∈ T since
q(m1) ∈ T and T is a submodule, so that r.m1 ∈ q−1(T ). Thus q−1(T ) is a submodule
of M as required.

Now if T is any subset of M/N we have q(q−1(T )) = T simply because q is sur-
jective. Since we have just checked q−1(T ) is always a submodule in M, this imme-
diately implies that the map S 7→ q(S ) is a surjective map from submodules in M
to submodules in M/N and that T 7→ q−1(T ) is an injective map48, and moreover
since q(N) = {0} ⊆ T for any submodule T of M/N we have N ⊆ q−1(T ) so that the
image of the map T 7→ q−1(T ) consists of submodules of M which contain N. Hence
it only remains to check that the submodules of M of the form q−1(T ) are precisely
these submodules. To see this suppose that S is an arbitrary submodule of M, and
consider q−1(q(S )). By definiton this is

q−1(q(S )) = {m ∈ M : q(m) ∈ q(S )}

= {m ∈ M : ∃s ∈ S such that m + N = s + N}

= {m ∈ M : ∃s ∈ S such that m ∈ s + N}
= S + N.

But if S contains N then we have S + N = S and hence q−1(q(S )) = S and so any
submodule S which contains N is indeed the preimage of a submodule of M/N as
required. �

Remark 9.6. If N ⊆ M is a submodule and q : M → M/N is the quotient map, for a
submodule Q of M containing N we will usually write Q/N for the submodule q(Q)
of M/N.

48Again this is just set theory: if f : X → Y and g : Y → X are functions such that g ◦ f = idX then f
is injective and g is surjective.
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Theorem 9.7. (Universal property of quotients.) Suppose that φ : M → N is a homomor-
phism of R-modules, and S is a submodule of M with S ⊆ ker(φ) and let q : M → M/S be
the quotient homomorphism. Then there is a unique homomorphism φ̄ : M/S → N such
that φ = φ̄ ◦ q, that is, such that the following diagram commutes:

M
φ //

q ""D
DD

DD
DD

D N

M/S
φ̄

==zzzzzzzz

Moreover ker(φ̄) is the submodule ker(φ)/S = {m + S : m ∈ ker(φ)}.

Proof. The proof exactly mirrors the case for rings. Since q is surjective, the formula
φ̄(q(m)) = φ(m) uniquely determines the values of φ̄, so that φ̄ is unique if it exists.
But if m−m′ ∈ S then since S ⊆ ker(φ) it follows that 0 = φ(m−m′) = φ(m)−φ(m′) and
hence φ is constant on the S -cosets, and therefore induces a map φ̄(m + S ) = φ(m).
The fact that φ̄ is a homomorphism then follows directly from the definition of the
module structure on the quotient M/S , and clearly φ = φ̄ ◦ q by definition. To see
what the kernel of φ̄ is, note that φ̄(m + S ) = φ(m) = 0 if and only if m ∈ ker(φ), and
hence m + S ∈ ker(φ)/S as required. �

Corollary 9.8. Let M be an R-module. We have the following isomorphisms.

i) (First isomorphism theorem.) If φ : M → N is a homomorphism then φ induces an
isomorphism φ̄ : M/ker(φ)→ im(φ).

ii) (Second isomorphism theorem.) If M is an R-module and N1,N2 are submodules of
M then

(N1 + N2)/N2 � N1/N1 ∩ N2,

iii) (Third isomorphism theorem.) Suppose that N1 ⊆ N2 are submodules of M. Then
we have

(M/N1)/(N2/N1) � M/N2.

Proof. The proofs again are exactly the same as for rings. For the first isomorphism
theorem, apply the universal property to S = ker(φ). Since in this case ker(φ̄) =

ker(φ)/ker(φ) = 0 it follows φ̄ is injective and hence induces an isomorphism onto
its image which from the equation φ̄ ◦ q = φ must be exactly im(φ).

For the second isomorphism theorem, let q : M → M/N2 be the quotient map. It
restricts to a homomorphism p from N1 to M/N2, whose image is clearly (N1+N2)/N2,
so by the first isomorphism theorem it is enough to check that the kernel of p is
N1 ∩ N2. But this is clear: if n ∈ N1 has p(n) = 0 then n + N2 = 0 + N2 so that m ∈ N2,
and so n ∈ N1 ∩ N2.

For the third isomorphism theorem, let qi : M → M/Ni for i = 1, 2. By the univer-
sal property for q2 with S = N1 we see that there is a homomorphism q̄2 : M/N1 →

M/N2 induced by the map q2 : M → M/N2, with kernel ker(q2)/N1 = N2/N1 and
q̄2 ◦ q1 = q2. Thus q̄2 is surjective (since q2 is) and hence the result follows by the
first isomorphism theorem. �
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10. FREE, TORSION AND TORSION-FREE MODULES.

All rings R in this section are integral domains unless otherwise stated.
The fact that the nonzero elements of a ring do not have to be invertible means

that modules behave less uniformly than vector spaces do. For example, you know
that any vector space has a basis, and hence in the above terminology it is free.
However, over Z there are many modules which are not free: indeed a finite abelian
group is certainly a Z-module, but it cannot be free since a free module must con-
tain infinitely many elements (if an element m is part of a basis, it is easy to check
that the elements n.m must all be distinct for n ∈ Z). In fact if M is a finite abelian
group, every element is of finite order by Lagrange’s theorem, which means that
for every element m ∈ M there is an integer n ∈ N such that n.m = 0. This is one
important way in which a module over a general ring can be different from the
case of vector spaces: we may have a nonzero scalar r and a nonzero element m of
our module M whose product r.m is nevertheless equal to zero. This is similar to
the fact that a general ring may contain zero-divisors.

Definition 10.1. Let M be an R-module and suppose that m ∈ M. Then the annihila-
tor of m, denoted AnnR(m) is {r ∈ R : r.m = 0}. A direct check shows that AnnR(m) is
an ideal in R. When AnnR(m) is nonzero we say that m ∈ M is a torsion element.

We say that a module M is torsion if every m ∈ M is a torsion element. On the
other hand, if a module M has no nonzero torsion elements we say that M is torsion-
free. Note that a ring is an integral domain if and only if it is torsion-free as a module
over itself, i.e. torsion elements in the R-module R itself are exactly the zero-divisors
in R.

Remark 10.2. If M is an R-module, and m ∈ M then the submodule R.m of M gen-
erated by m is isomorphic as an R-module to R/AnnR(m). Indeed the map r 7→ r.m
defines an R-module homomorphism from R to M whose image is exactly R.m.
Since the kernel of the map is evidently AnnR(m) the isomorphism follows from
the first isomorphism theorem. (Note this also shows AnnR(m) is an ideal, though
this is also completely straight-forward to see directly.)

Definition 10.3. A module which is generated by a single element is known as a
cyclic module. It follows from what we have just said that any cyclic module is
isomorphic to a module of the form R/I where I is an ideal of R (corresponding to
the annihilator of a generator of the cyclic module).

Recall from above that we say a module M is free if it has a basis S . The case
where S is finite is the one of most interest to us. Then, just as picking a basis of a
vector space gives you coordinates49 for the vector space, the basis S allows us to
write down an isomorphism φ : M → Rn where n = |S |. Indeed if S = {s1, s2, . . . , sn}

and m ∈ M then we may write m =
∑n

i=1 risi for a unique n-tuple (r1, r2, . . . , rn) ∈

49That is, if V is an n-dimensional R-vector space, the fact that a choice of basis for V gives you an
isomorphism from V to Rn is just a formal way of saying that picking a basis gives you coordinates
for V .



44 KEVIN MCGERTY.

Rn, and we set φ(m) = (r1, . . . , rn). It is straight-forward to check that φ is then an
isomorphism of modules.

It is easy to see that when R is an integral domain a free module must be torsion
free, but the converse need not be true in general, as the next example shows. On
the other hand, for principal ideal domains, whose modules will be our main focus,
we will shortly see that torsion-free modules are actually free.

Example 10.4. Let R = C[x, y] be the ring of polynomials in two variables. Then the
ideal I = 〈x, y〉 is a module for R. It is torsion-free because R is an integral domain
(and I is a submodule of R) but it is a good exercise50 to see that it is not free. The
study of modules over a polynomial ring with many variables is a basic ingredient
in algebraic geometry, and the commutative algebra course in Part B focuses largely
the study of these rings and their quotients.

Recall we also had the notion of a torsion element in a module.

Lemma 10.5. Let M be an R-modules, and let Mtor = {m ∈ M : AnnR(m) , {0}} is a
submodule of M. Moreover, the quotient module M/Mtor is a torsion-free module.

Proof. Let x, y ∈ Mtor. Then there are nonzero s, t ∈ R such that s.x = t.y = 0. But
then s.t ∈ R\{0}, since R is an integral domain, and (s.t)(x + y) = t.(s.x) + s.(t.y) = 0,
and clearly if r ∈ R then s.(r.x) = r.(s.x) = 0, so that it follows Mtor is a submodule of
M as required.

To see the moreover part, suppose that x + Mtor is a torsion element in M/Mtor.
Then there is a nonzero r ∈ R such that r.(x + Mtor) = 0 + Mtor, that is, r.x ∈ Mtor.
But then by definition there is an s ∈ R such that s.(r.x) = 0. But then s.r ∈ R is
nonzero (since R is an integral domain) and (s.r).x = 0 so that x ∈ Mtor and hence
x + Mtor = 0 + Mtor so that M/Mtor is torsion free as required. �

We will study finitely generated modules for a PID via the study of free modules.
The free modules are, in a sense, the ones whose behaviour is closest to that of vec-
tor spaces over a field. In particular we will be able to understand maps between
free modules in terms of matrices just like we do in linear algebra.

We first show that there is an analogue of the notion of dimension for a free
module: Just as for vector spaces, the size of a basis for a free module is uniquely
determined (even though a free module may have many different bases, just as for
vector spaces).

Lemma 10.6. Let M be a finitely generated free R-module. Then the size of a basis for M
is uniquely determined and is known as the rank rk(M) of M.

Proof. Let X = {x1, . . . , xn} be a basis of M. Pick a maximal ideal51 I in R. Let IM be
the submodule generated by the set {i.m : i ∈ I,m ∈ M} and let MI = {

∑n
i=1 rixi : ri ∈

I}. Since I is an ideal it is easy to check that MI is a submodule of M. We claim that

50Which is on Problem Set 4!
51In a PID we know that maximal ideals exist – if R is a field then we take I = 0, otherwise we take

aR for a ∈ R an irreducible element. In a general ring maximal ideals also always exist if you assume
the axiom of choice.
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MI = IM. In fact, since X generates M, any element of the from r.m where r ∈ I and
m ∈ M lies in MI , so that IM ⊆ MI . On the other hand, certainly IM contains rixi for
any ri ∈ I, i ∈ {1, 2, . . . , n}, and so all sums of the form

∑n
i=1 rixi, and so MI ⊆ IM and

hence MI = IM as required. Notice that in particular this means the submodule
MI = IM does not depend on the choice of a basis of X.

Let q : M → M/IM be the quotient map. The quotient module M/IM is module
for not just R, but in fact52 for the quotient field k = R/I, via the action (r + I).q(m) =

q(r.m). Indeed we just need to check this definition does not depend on the choice
of r ∈ r + I. But if r − r′ ∈ I then r.m − r′.m = (r − r′).m ∈ IM and so q(r′.m) = q(r.m) as
claimed.

We now claim that if X is a basis for M then q(X) is a basis for the k-vector space
M/IM. Note that if we assume the claim then |X| = dimk(M/IM) and the right-hand
side is clearly independent of X (since we have checked that the submodule IM
is) so this will finish the proof of the Lemma. To prove the claim first note that
since X generates M and q is surjective it follows that q(X) generates (i.e. spans)
M/IM. Now suppose we have

∑n
i=1 ciq(xi) = 0 ∈ M/IM, where ci ∈ k. Picking any

representatives ri ∈ R for the ci ∈ R/I we see that

0 =

n∑
i=1

ciq(xi) =

n∑
i=1

q(rixi) = q(
n∑

i=1

rixi)

where the second equality follows from the definition of the R/I-action, and the
lasts from the fact that q is an R-module homomorphism. But then it follows that
y =

∑k
i=1 rixi ∈ ker(q) = IM. But since IM = MI this means that ri ∈ I for each i,

that is ci = 0. It follows X̄ is linearly independent and hence a k-basis of M/IM as
required. �

We will shortly see that any finitely generated module is a quotient of a free
module Rn for some n. It will therefore be important to understand submodules of
free modules. If R is a PID (as we will from now on assume) then the submodules
of free modules are particularly well behaved.

Proposition 10.7. Let M be a finitely generated free module over R a PID, and let X =

{e1, . . . , en} be a basis. Then if N is a submodule of M, N is also free and has rank at most n
elements.

Proof. We prove this by induction on n = |X|. If n = 1, then if φ : R → M is the
homomorphism defined by φ(r) = re1, the first isomorphism theorem shows that
M � R. Now a submodule of R is just an ideal, and hence the condition that R is
a PID exactly ensures any submodules N of R is cyclic, say N = Ra. Since R is an
integral domain, it follows that {a} is a basis of N unless a = 0, so that N is free of
rank 0 or 1 and the n = 1 case is thus established.

Now suppose that n > 1. Let W = Re1 + Re2 + . . .Ren−1, and let N1 = N ∩W. Now
N1 is a submodule of the free module W which has rank n − 1, so that by induction

52This is exactly what the submodule IM is cooked up to do – if you like M/IM is the largest
quotient of M on which R/I acts naturally.
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N1 is free of rank k ≤ n− 1. Let {v1, . . . , vk} be a basis of N1. The second isomorphism
theorem shows that N/N1 � (N + W)/W ⊆ M/W. But M/W clearly has basis {en + W},
so that N/N1 is either zero or free of rank 1. In the former case N = N1 and we are
done, while in the latter we may pick vk+1 so that vk+1 + N1 is a basis of N/N1. We
claim {v1, . . . , vk+1} is a basis of N. If m ∈ N then since {vk+1 +N1} is a basis of N/N1, we
may find rk+1 ∈ R such that m + N1 = rk+1vk+1 + N1. But then m− rk+1vk+1 ∈ N1, and so
since N1 has basis {v1, . . . , vk} there are r1, . . . , rk ∈ R such that m−rk+1vk+1 =

∑k
i=1 rkvk,

that is, m =
∑k+1

i=1 rivi. To see {v1, . . . , vk+1} is linearly independent, suppose that∑k+1
i=1 sivi = 0. Then 0 + N1 =

∑k+1
i=1 sivi + N1 = sk+1vk+1 + N1, so that we must have

sk+1 = 0 since {vk+1 + N1} is a basis of N/N1. But then
∑k

i=1 skvk = 0 and hence si = 0
for all i, 1 ≤ i ≤ k since {v1, . . . , vk} is a basis of N1. It follows {v1, . . . , vk+1} is a basis
of N and since k + 1 ≤ (n − 1) + 1 = n we are done.

�

Remark 10.8. Although it is noted in the proof above, it is worth emphasising that
if R is an integral domain, then the submodules of a free module of rank d are free
of rank at most d if and only if R is a PID, because the case of a free module of rank
1 requires that ideals of R must be principal.

Example 10.9. Suppose that N ⊂ Z3 is the submodule

N = {(a, b, c) ∈ Z3 : a + b + c ∈ 2Z}.

Proposition 10.7 tells us that N must be free of rank at most 3, but let’s use the
strategy of proof to actually find a basis. Let {e1, e2, e3} be the standard basis of Z3

and let Mi = Re1 + Re2 + . . .Rei, so that each of Mi/Mi−1 is isomorphic to R via the
map induced by projecting to the i-th coordinate. Similarly let Ni = N ∩ Mi, so that
N1 ⊆ N2 ⊆ N3 = N. Now N1 = {(2a, 0, 0)}, so that (2, 0, 0) is obviously a generator.
For N2 = {(a, b, 0) : a + b ∈ 2Z} we have N2/N1 � (N2 + M1)/M1 and this is clearly all
of M2/M1 (since the map is given by (a, b, c) 7→ b and b is clearly arbitrary), so has
a basis e2 + M1. We can lift this to an element of N2 by taking (99, 1, 0) say. Finally
taking N3/N2 = N/N2 we again see that it is all of M/M2 so that we can pick (0, 89, 1)
as a generator, and so {(2, 0, 0), (99, 1, 0), (0, 89, 1)} is a basis of N

10.1. Homorphisms between free modules. In this section we want to study “lin-
ear maps” (or module homomorphisms) between free modules. The advantage of
working with free modules here is that by choosing bases, we can record such a
map using a matrix, just like you do in linear algebra over a field. Indeed all the
results of this section have exactly the same proofs as the corresponding results for
vector spaces, which were discussed in Prelims Linear algebra I (see Section §6.5 of
the online notes for that course for example, or the Part A Linear Algebra notes for
Lectures 1 and 2). We begin with a little notation.

Definition 10.10. If M,N are R-modules, let HomR(M,N) denote the set of module
homomorphisms from M to N. It is an R-module: if ψ, φ ∈ HomR(M,N) then ψ + φ
is a module homomorphism (where (ψ + φ)(m) = ψ(m) + φ(m)) and r.ψ is defined by
(r.ψ)(m) = r.(ψ(m)).
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Notice that the scalar multiplication gives a module structure only when R is
commutative.

Lemma 10.11. Let M and N be R-modules, and let φ : M → N be an R-module homomor-
phism

i) Let X be a spanning set for M, then φ is uniquely determined by its restriction to
X.

ii) If X is a basis of M then given any function f : X → N there is a unique R-module
homomorphism φ f : M → N.

Proof. If v ∈ F, then since X spans M, there are elements x1, . . . , xn ∈ X and r1, . . . rn ∈

R such that v =
∑n

i=1 rixi. Since φ is an R-homomorphism it follows φ(v) =
∑n

i=1 riφ(xi),
so φ(v) is uniquely determined by the {φ(xi) : 1 ≤ i ≤ n}.

If X is also a basis of M we can reverse this process: given f : X → N since
the expression for v ∈ M in terms of the elements of X is unique, we get a well-
defined function φ f : M → N by setting, for v =

∑n
i=1 rixi (where ri ∈ R, xi ∈ X,

1 ≤ i ≤ n), φ(v) =
∑n

i=1 ri f (xi). This function is R-linear again because of uniqueness:
if v =

∑n
i=1 rixi and53 w =

∑n
i=1 sixi then for t ∈ R we have v + tw =

∑n
i=1(ri + tsi)xi,

hence

φ f (v + tw) =

n∑
i=1

(ri + tsi)xi =

n∑
i=1

rixi + t
n∑

i=1

sixi = φ(v) + tφ(w),

as required. �

Corollary 10.12. Let φ : F1 → F2 be a homomorphism of free modules with bases X1 =

{e1, . . . , em} and X2 = { f1, . . . , fn} respectively. Then ψ is determined by the matrix A =

(ai j) ∈Matn,m(R) given by

(10.1) φ(ei) =

n∑
j=1

a ji f j.

Conversely given a matrix A ∈ Matn,m(R) the above formula determines a unique R-
homomorphism φA : F1 → F2.

Proof. This follows immediately from the above, since the matrix A records (once
we know the bases X1 and X2) since the map φ completely as it records the values of
φ on X1. Similarly, if we are given a matrix A, we may define a function f : X1 → N
using Equation (10.1), which extends uniquely to an R-module homomorphism
φA : F1 → F2. �

Exactly as in linear algebra, composition of R-module homomorphisms corre-
sponds to matrix multiplication: As we will use change of bases matrices (at least
the special ones corresponding to elementary row and column operations) we re-
view briefly the details now, but the arguments are exactly the same as in Prelims
Linear Algebra.

53We can assume v,w lie in the span of some finite subset {x1, . . . , xn} of X – by definition each of
them does and the union of two finite sets is finite!
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Lemma 10.13. Let F1, F2, F3 be free modules with bases X1 = {e1, e2, . . . , en} and X2 =

{ f1, f2, . . . , fm} and X3 = {g1, g2, . . . , gl} respectively. If φ : F1 → F2 and ψ : F2 → F3, the
matrix of φ with respect to the bases X1 and X2 is A and the matrix of ψ with respect to the
bases X2 and X3 is B, then the matrix of the homomorphism ψ ◦ φ with respect to the bases
X1 and X3 is BA.

Proof. We just need to compute ψ ◦ φ(ei) in terms of the basis {g1, . . . , gl}. But we
have

ψ ◦ φ(ei) = ψ(
m∑

j=1

a ji f j) =

m∑
j=1

a jiψ( f j)

=

m∑
j=1

a ji

 l∑
k=1

bk jgk


=

l∑
k=1

 m∑
j=1

bk ja ji

 gk,

Thus the matrix of ψ ◦ φ has (k, i) entry
∑m

j=1 bk ja ji as required.
�

Corollary 10.14. If F is a free module with basis X = {e1, . . . , en}, then the set of iso-
morphisms ψ : F → F corresponds under the above map to GLn(R) = {A ∈ Matn(R) :
∃B ∈ Matn(R), A.B = B.A = In}, that is, the group of units in the (noncommutative) ring
Matn(R). Moreover, given two bases X = {x1, . . . , xn} and Y = {y1, . . . , yn} there is a unique
isomorphism ψ : F → F such that ψ(xi) = yi.

Proof. The first statement follows from the fact that composition of morphisms cor-
responds to matrix multiplication, so that the map sending a homomorphism to
the corresponding n×n matrix is a ring map. For the moreover, note that if X and Y
are bases, there is a unique module homomorphism ψ : F → F such that ψ(xi) = yi
and a unique module homomorphism φ : F → F such that φ(yi) = xi. The compo-
sition φ ◦ ψ satisfies φ ◦ ψ(xi) = xi, and hence (again by the uniqueness property)
φ ◦ ψ = id. �

Exercise 10.15. Let A ∈ Matn(R). The determinant function makes sense for square
matrices with entries in any commutative ring. Characterize the group of invertible
matrices GLn(R) in terms of the determinant function.

Remark 10.16. Lemma 10.13 makes it easy to see how changing the bases of the
free modules effects the matrix we associate to a homomorphism. If F1 and F2 are
free modules with bases X1 and X2 respectively, write X2[φ]X1 for the matrix of the
homomorphism φ with respect to the bases X1, X2. Let Y1,Y2 be another pair of
bases for F1 and F2 respectively. If A = X2[φ]X1 we would like to calculate Y2[φ]Y1 in
terms of A. To do this, let Q = Y1[idF1]X1 , and let P = X2[idF2]Y2 . Then it follows from
Lemma 10.13 and the fact that φ = idF2 ◦ φ ◦ idF1 that

Y2[φ]Y1 = PAQ.
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Definition 10.17. The matrices P and Q are called the change of bases matrices for
the pairs of bases X2,Y2 and X1,Y1 respectively. They are readily computed: if F is
a free module with two bases X and Y , the matrix Y [idF]X has columns given by the
“Y-coordinates” of the elements of the basis X: If Y = { f1, . . . , fn} and X = {e1, . . . , en}

then e j =
∑n

i=1 pi j fi where P = (pi j) is the change of basis matrix. For example, if
F = Rn with standard basis {e1, . . . , en} (that is, ei = (0, . . . , 1, . . . 0) where the 1 is in
position i) and Y = { f1, . . . , fn} is any other basis, then the change of basis matrix
from Y to the standard basis is just the matrix with columns the basis vectors fi,
and thus the change of basis matrix from the standard basis to the basis Y is given
by the inverse of this matrix.

The above discussion shows that if φ : F1 → F2 is a homomorphism between free
modules F1 and F2 of rank m and n with bases X1, X2 respectively, we may associate
to φ a matrix A, and by picking other possible bases we obtain matrices of the form
PAQ where P ∈ GLn(R) and Q ∈ GLm(R) are change of bases matrices. Thus the
homomorphism ψ corresponds to the equivalence class of A in Matn,m(R) where X
and Y are equivalent if there are invertible matrices P and Q such that Y = PXQ,
that is, if they are in the same orbit of the natural action54 of GLn(R) ×GLm(R).

It follows that in order to find a “canonical form” for the homomorphism φ, that
is, a matrix representing φ which is as simple as possible (and preferably that it
be as unique as possible), we need to find a canonical element of each orbit of the
action of GLn ×GLm(R) on Matn,m(R). We will solve this problem in the next section
when R is a Euclidean domain.

11. CANONICAL FORMS FOR MATRICES OVER A EUCLIDEAN DOMAIN.

Before we begin finding this canonical form, it is worth recalling the situation
for vector spaces: in this case the statement we want is essentially the rank-nullity
theorem: if R is a field and ψ : Rm → Rn, then you can pick a basis of ker(ψ) ⊆ Rm and
extend it to a basis of Rm. The image of the vectors you add in to obtain a basis of
Rm give a basis of im(ψ), which can in turn be extended to a basis of Rn. The matrix
of ψ with respect to the resulting bases of Rm and Rn is then diagonal with 1s and 0s
on the diagonal, where the rank of ψ is the number of 1s and the nullity the number
of zeros. The key to this argument is the Steinitz Exchange Lemma, which is that
allows you to show that in a vector space you can extend any linearly independent
set to a basis. However, this lemma is obviously false for modules: for example 2Z
is free inside Z, with basis {2}, but the only bases for Z are {1} and {−1}, thus we
cannot “extend” the basis {2} to a basis of Z. We will show in this section that, in a
sense, this is the only thing that fails for modules over a Euclidean domain: that is,
we will show that if N is a submodule of Rn there is always a basis of {e1, . . . , en} of
Rn for which we can obtain a basis of N by taking appropriate multiples of a subset
of the basis. Explicitly, perhaps after reordering the basis {e1, . . . , en}, we will show

54Note that this action, if we want it to be a left action, should be (P,Q).X = PXQ−1, but the inverse
is not too important since we are only interested in the orbits of the action: A and B are in the same
orbit if and only if there are invertible matrices P and Q such that B = PAQ.
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that there are elements c1, . . . , ck ∈ R and some k ≤ n, such that {c1e1, . . . , ckek} is a
basis for N.

The most explicit way to prove rank-nullity for linear maps between vector
spaces is to use row and column operations (which correspond to particularly sim-
ple changes of the basis of the source and target of the linear map respectively). We
will use the same idea for modules over a Euclidean domain.

Definition 11.1. Let A ∈ Mm,n(R) be a matrix, and let r1, r2, . . . , rm be the rows of A,
which are row vectors in Rn. An elementary row operation on a matrix A ∈ Mm,k(R) is
an operation of the form

(1) Swap two rows ri and r j.
(2) Replace one row, row i say, with a new row r′i = ri + cr j for some c ∈ R, and

j , i.
In the same way, viewing A as a list of n column vectors, we define elementary

column operations.

Note that the row operations correspond to multiplying A by elementary matri-
ces on the left and the column operations correspond to multiplying A by elemen-
tary matrices on the right. Indeed if we let Ei j denote the matrix with (i, j)-th entry
equal to 1 and all other entries zero, then the matrix corresponding to the first row
operation is S i j = Ik − Eii − E j j + Ei j + E ji, while second elementary row operation
is given by multiplying on the left by Xi j(c) = Ik + cEi j. The column operations are
given by multiplying on the right by these matrices.

S i j =



1
0 1

1
. . .

1 0
1



Xi j(c) =



1
. . .

1 c
. . .

1
1


Definition 11.2. If A, B ∈ Matn,m(R) we say that A and B are equivalent if B = PAQ
where P ∈ Matn,n(R) and Q ∈ Matm,m(R) are invertible matrices. Thus two matrices
are equivalent if and only if they lie in the same orbit of the GLn(R)×GLm(R) action
defined above. We will say that A and B are ERC equivalent if one can be obtained
from the other by a sequence of elementary row and column operations. Since
row and column operations correspond to pre- and pos-multiplying a matrix by
elementary matrices, it is clear that two ERC equivalent matrices are equivalent.
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(In fact, if you also allow the elementary row and column operations which simply
rescale a row or column by a unit then you can show the converse too, but we do
not need that here.)

For the remainder of this section we assume that R is a Euclidean domain. Recall that we
write N : R\{0} → N for the norm function of our Euclidean domain R.

Theorem 11.3. Suppose that A ∈ Matn,m(R) is a matrix. Then A is ERC equivalent (and
hence equivalent) to a diagonal matrix D where if k = min{m, n} then55

D =



d1 0 . . . 0

0 d2
. . . 0

...
. . .

. . . 0
0 . . . 0 dk
...

...
...

0 0 . . . 0


and each successive di divides the next (thus possibly ds = ds+1 = . . . dk = 0, for some s,
1 ≤ s ≤ k). Moreover, the sequence of elements (d1, d2, . . . , dk) is unique up to units.

Proof. We will not prove the uniqueness statement (though see Problem Sheet 4 for
how one can do this). We claim that by using row and column operations we can
find a matrix equivalent to A which is of the from

(11.1) B =


b11 0 . . . 0
0 b22 . . . b2m
...

...
. . .

...
0 bn2 . . . bnm


where b11 divides all the entries bi j in the matrix. Factoring out b11 from each entry,
we may then applying induction (on n say) to the submatrix B′ = (bi j/b11)i, j≥2, to
obtain the proposition. (Note that row and column operations on B′ correspond to
row and column operations on B because b11 is the only nonzero entry in the first
row and column of B.)

We are thus reduced to proving the claim. For this we use induction on N(A) =

min{N(ai j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Using row and column swaps we may assume
N(a11) = N(A).

Step 1: If any ai1 or a1 j is not divisible by a11, say ai1, then ai1 = qi1a11 + ri1,
so taking qi1 times row 1 from row i we get a new matrix A′ with entry ri1 and
N(A1) ≤ N(ri1) < N(a11) = N(A), so we are done by induction.

Step 2: If all the ai1s and a1 js are divisible by a11 we my subtract appropriate
multiples of the first row from the other rows to get a matrix A2 with all entries in
the first column below a11 equal to zero and similarly using column operations we
can then get a matrix A3 with all entries on the first row after a11 equal to zero.

55The displayed matrix shows the case where k = m, and so there are (n−m) rows below dk consist
entirely of zeros. If k = n then there are (m − n) columns consisting entirely of zeros to the right of dk.
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Step 3: Thus A3 has the form we require except perhaps it has an entry not divis-
ible by a11. Thus either we are done, or letting (A3) = (a3

i j) we have for some i, j > 1,
the entry a3

i j is not divisible by a11 = a3
11. Then add row i of A3 to row 1, to get a

matrix A4 where now and we see that we are back in the situation of step 1, and we
are done by induction.

The claim and hence the theorem are thus proved. �

Example 11.4. The above proposition is really an algorithm, so lets use it in an
example, taking R = Z: Let

A =

 2 5 3
8 6 4
3 1 0


The entry of smallest norm is the (3, 2) entry, so we swap it to the (1, 1) entry (by

swapping rows 1 and 3 and then columns 1 and 2 say) to get

A1 =

 1 3 0
6 8 4
5 2 3


Now since the (1, 1) entry is a unit, there will be no remainders when dividing

so we get

A2 =

 1 0 0
0 −10 4
0 −13 3


Next we must swap the (3, 3)-entry to the (2, 2)-entry to get:

A3 =

 1 0 0
0 3 −13
0 4 −10


Dividing and repeating our row and column operations now on the second row
and column (this time we do get remainders) gives:

A4 =

 1 0 0
0 3 −13
0 1 3

 ∼ A5 =

 1 0 0
0 3 2
0 1 8


(where ∼ is to denote ERC equivalence). Now moving the (3, 2) entry to the (2, 2)-
entry and dividing again gives:

A6 =

 1 0 0
0 1 8
0 3 2

 ∼ A7 =

 1 0 0
0 1 0
0 3 −22

 ∼ A8 =

 1 0 0
0 1 0
0 0 −22


which is in the required normal form.
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12. PRESENTATIONS AND THE CANONICAL FORM FOR MODULES.

In this section all rings R are PIDs.

So far we have concentrated on the study of free modules. Aside from the fact
that these are the simplest modules to study, we do this because we can understand
any (finitely generated) module in terms of free modules. The key to this is the
notion of a presentation of a module. This is a notion which is important in other
parts of algebra also – if you take the Group Theory option next term for example
you will see how it arises in that subject.

The goal is to describe a (finitely generated) module M in concrete terms: ex-
plicitly we will show that any finitely generated module can be described in terms
of a finite generating set and a matrix recording the “relations” amongst the gen-
erators. To do this we will use matrix algebra we developed for homomorphisms
of free modules in the previous section. Once we have this explicit description of
M, we can use the canonical form theorem for the matrix describing M to obtain a
canonical form for the module M.

Proposition 12.1. i) Let M be a nonzero finitely generated module. Then there is an
n ∈ N and a surjective morphism φ : Rn → M. In particular, Rn/ker(φ) � M.

ii) Let M and φ be as in i). There exists a free module Rm with m ≤ n and an injec-
tive homomorphism ψ : Rm → Rn such that im(ψ) = ker(φ). In particular, M is
isomorphic to Rn/im(ψ).

Proof. For the first part, given any finite subset {m1,m2, . . . ,mn} of M, if {e1, . . . , en}

is a basis of Rn (say the standard basis consisting of elements ei = (0, . . . , 1, . . . 0) all
of whose coordinates are zero except for the i-the entry which is equal to 1) then
the map ei 7→ mi (1 ≤ i ≤ n) extends, by Lemma 10.11ii), to a homomorphism
φ : Rn → M. Clearly the condition that {m1,m2, . . . ,mn} is a generating set is then
equivalent to the map φ being surjective, since both assert that any element of M
can be written in the form

∑n
i=1 rimi = φ(

∑n
i=1 riei) (ri ∈ R, 1 ≤ i ≤ n). The surjectivity

of φ and the first isomorphism theorem then show that Rn/ ker φ � M.
For the second part, note that since R is a PID, the submodule ker(φ) is a free

submodule of rank m ≤ n. Pick a basis {x1, . . . , xm} of ker(φ), and define ψ by sending
the standard basis of Rm to {x1, . . . , xm}. This map is then clearly injective and has
image exactly ker(φ) as required. �

Definition 12.2. Let M be a finitely generated R-module. The pair of maps φ, ψ of
the previous Lemma, so that im(φ) = M and ψ : Rm → Rn has image im(ψ) = ker(φ)
is called a presentation of the finitely generated modules M. When the map ψ can
be chosen to be injective, the presentation is called a resolution of the module M.
It is a special feature of modules over a PID that, for a finitely generated module,
there are presentations which are also resolutions. Future courses in commutative
algebra and what is called homological algebra study what happens to these two
notions for more general rings.

Remark 12.3. (Non-examinable.) The properties of the above homomorphisms ψ and
φ can be captured by noticing that
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0 // Rm ψ // Rn φ // M // 0
is what is called a short exact sequence: An exact sequence is a sequence of homomor-
phisms where the image of each map is the kernel the next map in the sequence. A
short exact sequence is one with exactly five terms, the outermost two terms both
being 0. Exact sequences play an important role in algebraic topology and homo-
logical algebra.

To see why, in more concrete terms, one calls this a presentation, lets make ex-
plicit what we have done. If {e1, . . . , em} is the standard basis of Rm and { f1, . . . , fn}
is the standard basis of Rn, then just as in linear algebra, we may write

ψ(e j) =

n∑
i=1

ai j fi

for some ai j ∈ R, and the resulting matrix A = (ai j)1≤i≤n,1≤ j≤m encodes the homo-
morphism ψ. Describing a module M as the quotient Rn/im(ψ) says that M has
generators m1, . . . ,mn (the images of the elements fi + im(φ) ∈ Rn/im(ψ) under the
isomorphism from Rn/im(ψ) → M induced by φ) and the R-linear dependencies
these generators satisfy are all consequences of the m equations:

n∑
i=1

ai jmi = 0 ( j = 1, 2, . . . ,m).

Thus the map φ : Rn → M picks out the generators we use for M and the map ψ
records the relations, or linear dependencies, among these generators: that they
are R-linear relations among the generators follows because φ ◦ ψ = 0, while the
fact that all other relations are a consequence of these follows because the elements
(
∑n

i=1 ai j fi)m
j=1 are a basis for ker(φ) = im(ψ). Indeed if we have a relation

∑n
i=1 rimi =

0, then it follows that φ(
∑n

i=1 ri fi) = 0, that is
∑n

i=1 ri fi ∈ im(ψ), which means that
there are are scalars (si)m

i=1 such that
∑n

i=1 ri fi =
∑m

i=1 siψ(ei) =
∑m

i=1 si(
∑n

i=1 ai j fi). In
other words, the R-linear relation given by the scalars (ri)n

i=1 can be obtained as a
linear combination (given by the (s j)m

j=1) of the relations
∑n

i=1 ai jmi = 0 (1 ≤ j ≤ m).
Up to isomorphism then, the structure of the module M is captured by the matrix of
relations A = (ai j). It is this which allows us to use our canonical form theorem for
matrices over a Euclidean Domain to obtain a canonical form for finitely generated
modules over such rings.

For the rest of this section, we will assume all rings are Euclidean Domains, although all
results stated here actually also hold more generally for PIDs.

Theorem 12.4. Suppose that M is a finitely generated module over a Euclidean domain
R. Then there is an integer s and nonzero nonunits c1, c2, . . . , cr ∈ R such that c1|c2| . . . |cr
such that:

M � (
r⊕

i=1

R/ciR) ⊕ Rs.
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Proof. Since R is a PID we may find a presentation for M, that is, an injection
ψ : Rm → Rn (so that m ≤ n) and a surjection φ : Rn → M with ker(φ) = im(ψ), so
that M � Rn/im(ψ). Now if A is the matrix of ψ with respect to the standard bases
of Rm and Rn, by Theorem 11.3, which gives a normal form for matrices over a
Euclidean domain, we know we can transform A into a diagonal matrix D with di-
agonal entries d1|d2| . . . dm using elementary row and column operations. But since
row and column operations correspond to pre- and post-multiplying A by invert-
ible matrices, and these correspond to changing bases in Rn and Rm respectively,
it follows that there are bases of Rn and Rm with respect to which ψ has matrix D.
But then if { f1 . . . , fn} denotes the basis of Rn, we see that the image of ψ has basis
{d1 f1, . . . , dm fm}. Now define a map θ : Rn →

(⊕m
i=1 R/diR

)
⊕ Rn−m by setting for any

m =
∑n

i=1 ai fi ∈ M,

θ(
n∑

i=1

ai fi) = (a1 + d1R, . . . am + dmR, am+1, . . . , an).

It is the clear that θ is surjective and ker(θ) is exactly the submodule generated by
{di fi : 1 ≤ i ≤ m}, that is, im(ψ). It follows by the first isomorphism theorem that
M � Rk/im(ψ) �

⊕m
i=1(R/diR) ⊕ Rk−m as required.

Finally, since ψ is injective it follows that each of the di are nonzero. On the other
hand if di is a unit (and so all d j for j ≤ i are also) then R/diR = 0, so this summand
can be omitted from the direct sum. The result now follows. �

Remark 12.5. The sequence of elements {c1, c2, . . . , cr} are in fact unique up to units.
We won’t have time to show this here (the problem sheets asks you to show unique-
ness for c1 and c1 . . . cm at least given a presentation.). The integer s is also unique,
which we now show as a consequence of the important corollary to the structure
theorem which says that a finitely generated torsion-free R-module is free.

Corollary 12.6. Let M be a finitely generated torsion-free module over R. Then M is free.
In general if M is a finitely generated R-module, the rank s of the free part of M given in
the structure theorem is rk(M/Mtor) and hence it is unique.

Proof. By the above structure theorem, M is isomorphic to a module of the form
Rs ⊕ (

⊕r
i=1 R/ciR), thus we can assume M is actually equal to a module of this form.

Let F = Rs and N =
⊕r

i=1 R/ciR, so that M = F ⊕ N. We claim that N = Mtor.
Certainly if a ∈ R/ciR then since ci|ck we see that ck(a) = 0. But then if m ∈ N, say
m = (a1, . . . , ak) where ai ∈ R/ciR it follows ck(a1, . . . , am) = (cka1, . . . , ckak) = (0, . . . , 0)
so N is torsion. On the other hand if m = ( f , n) where f ∈ F and n ∈ N then
r( f , n) = (r. f , r.n) = (0, 0) we must have f = 0 since a free module is torsion-free.
Thus Mtor = N as claimed. It follows that M is torsion-free if and only if M = F is
free. Moreover, by the second isomorphism theorem F � M/Mtor (or more directly,
just by noting that the restriction of the quotient map q : M → M/N = M/Mtor to
F is an isomorphism since it is readily seen to be injective and surjective) so that
s = rk(F) = rk(M/Mtor). �
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(Note that Problem sheet 4 gives an alternative proof that a torsion-free module over a
PID is free using just Proposition 10.7.)

Just to make it explicit, notice that since an abelian group is just a Z-module, our
structure theorem gives us a classification theorem for finitely generated abelian
groups.

Corollary 12.7. (Structure theorem for finitely generated abelian groups) Let A be a finitely
generated abelian group. Then there exist an integer r ∈ Z≥0 and integers c1, c2, . . . , ck ∈ Z
greater than 1 such that c1|c2| . . . |ck and

A � Zr ⊕ (Z/c1Z) ⊕ . . . ⊕ (Z/ckZ).

Moreover the integers s, c1, . . . , ck are uniquely determined.

Proof. This is simply a restatement of the previous theorem, except that once we
insist the ci are positive the ambiguity caused by the unit group Z× = {±1} is re-
moved. �

We can give an alternative formulation of the canonical form theorem, known
as the primary decomposition form, using the Chinese Remainder Theorem, or the
following slight generalization of it.

Lemma 12.8. Let d1, . . . , dk ∈ R be a set of pairwise coprime elements of a PID, that is
h.c.f{di, d j} = 1 if i , j. Then

R/(d1d2. . . . dk)R =

k⊕
i=1

R/diR.

Proof. The condition that the dis are pairwise coprime means that if we set, for i < k,
ci = di+1 . . . dk then for each i we have h.c.f{di, ci} = 1 (indeed if p is a prime element
dividing di and ci then since p is prime it divides one of the factors di+1, . . . , dk of
ci, say d j where j > i. But then p divides h.c.f{di, d j} contradicting our assumption).
Thus we see that for each i with 1 ≤ i ≤ k − 1 we have diR + ciR = R and diR ∩ ciR =

diciR. Thus by the Chinese Remainder Theorem and induction on k we see that

R/(d1 . . . dk)R = R/(d1c1R) � R/d1R ⊕ R/(c1)R �
k⊕

i=1

R/diR.

where in the last isomorphism we may use induction on the factor R/c1R since
c1 = d2 . . . dk is a product of k − 1 pairwise coprime factors. �

In particular if c = pn1
1 . . . . pnk

k is the prime factorisation of c where the pi are
distinct primes we can apply the previous Lemma (with di = pni

i ) to see that

(12.1) R/cR �
r⊕

i=1

R/pri
i R.

This allows us to give an alternative statement of the structure theorem:
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Theorem 12.9. (Structure theorem in primary decomposition form): Let R be a Euclidean
domain and suppose that M is a finitely generated R-module. Then there are irreducibles
p1, . . . , pk ∈ R and integers s, ri, 1 ≤ i ≤ k, such that:

M �
k⊕

i=1

(R/pri
i R) ⊕ Rs.

Moreover, the pairs (pi, ri) are uniquely determined up to units (where the units act on the
pi only). (Note however that the pis are not necessarily distinct.)

Proof. This follows immediately using the decomposition (12.1) on each of the cyclic
modules R/ciR in the statement of our first structure theorem. �

Example 12.10. Suppose that A � Z/44Z ⊕ Z/66Z. Then the first structure theorem
would write A as:

A � Z/22Z ⊕ Z/132Z.
Indeed the generators corresponding to the direct sum decomposition give a pre-
sentation of A as Z2 → Z2 → A where the first map is given by the matrix(

44 0
0 66

)
and as 66 = 1.44 + 22 we see that row and column operations allow us to show this
matrix is equivalent to:(

44 0
0 66

)
∼

(
44 44
0 66

)
∼

(
44 44
−44 22

)
∼

(
22 −44
44 44

)
∼

(
22 0
0 132

)
.

On the other hand, for the primary decomposition (since 44 = 22.11 and 66 = 2.3.11)
we would write A as:

A �
(
(Z/2Z) ⊕ (Z/22Z)

)
⊕ (Z/3Z) ⊕ (Z/11Z)⊕2

Notice that the prime 2 appears twice raised to two different powers. Intuitively
you should think of the primary decomposition as decomposing a module into
a direct sum of as many cyclic summands as possible, while the canonical form
decomposes the module into a direct sum with as few cyclic summands as possible.

Remark 12.11. Note that the first structure theorem gives a canonical form which
can be obtained algorithmically, while the second requires one to be able to factorise
elements of the Euclidean domain, which for example inC[t] is not an automatically
computable operation.

13. APPLICATION TO RATIONAL AND JORDAN CANONICAL FORMS.

The structure theorem also allows us to recover structure theorems for linear
maps: If V is a k-vector space and T : V → V is a linear map, then we view V as a
k[t]-module by setting t.v = T (v) for v ∈ V .

Lemma 13.1. Let M be a finitely generated k[t]-module. Then M is finite dimensional as
a k-vector space if and only if M is a torsion k[t]-module. Moreover, a subspace U of V is a
k[t]-submodule if and only if U is T -invariant, i.e. T (U) ⊆ U.
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Proof. Given M we can apply the structure theorem to see that:

M � k[t]s ⊕ k[t]/〈c1〉 ⊕ . . . ⊕ k[t]/〈ck〉,

where s ∈ Z≥0 and the ck are nonconstant56 polynomials. Now k[t] is infinite dimen-
sional as a k-vector space while k[t]/〈 f 〉 is deg( f )-dimensional as a k-vector space,
so if follows that M is torsion if and only if s = 0 if and only if M is finite dimen-
sional as a k-vector space. For the final statement, notice that a subspace U of M is
T -invariant if and only if it is p(T )-invariant for every p ∈ k[t]. �

The Lemma shows that pairs (V,T ) consisting of a finite dimensional k-vector
space V and a linear map T : V → V correspond to finitely generated torsion k[t]-
modules under our correspondence above. We can use this to give structure theo-
rems for endomorphisms57 of a vector space. Note that the ambiguity about units
in the statement of the canonical form theorem can be removed in the case of k[t]-
modules by insisting that the generators ci of the annihilators of the cyclic factors
k[t]/〈ci〉 are taken to be monic.

Definition 13.2. For a monic polynomial f = tn +
∑n−1

i=0 aiti ∈ k[t] of degree n ≥ 1, the
n × n matrix58

C( f ) =



0 . . . . . . 0 −a0

1 0
... −a1

0 1
. . .

...
...

...
. . .

. . . 0 −an−2
0 . . . 0 1 −an−1


.

is called the companion matrix of f .
If λ ∈ k and n ∈ N, then let Jn(λ) be the n × n matrix

Jn(λ) =



λ 1 . . . . . . 0
0 λ 1 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 1
0 . . . 0 λ


Lemma 13.3. Let k be any field, and suppose that f ∈ k[t] is a monic polynomial and λ ∈ k.

(1) If f = tn +
∑n−1

k=0 aktk then the k[t]-module k[t]/〈 f 〉 has basis {ti + 〈 f 〉 : 0 ≤ i ≤ n− 1
and the matrix for the action of t with respect to this basis is given by C( f ) the
companion matrix of f .

(2) If g = (t − λ)n ∈ k[t] for some λ ∈ k and n ∈ Z>0, then the k[t]-module k[t]/〈g〉
has basis {(t − λ)k + 〈g〉 : 0 ≤ k ≤ n − 1}. With respect to this basis, the action of
t is given by the Jordan block matrix Jn(λ) (where we order the basis by decreasing
powers of (t − λ) in order to get an upper triangular matrix).

56i.e. nonzero nonunit elements if k[t].
57Recall that an endomorphism of a vector space V is just a linear map from V to itself.
58If n = 1 the matrix is C( f ) = (−a0).
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Proof. Recall that by the division algorithm for polynomials, each coset of 〈 f 〉 has
a unique representative of degree strictly smaller than that of f . The assertion that
the two sets in parts (1) and (2) are k-bases then follows because (t−λ)k : 0 ≤ k ≤ n−1}
is clearly a basis for the space of polynomials of degree at most n − 1 for any λ ∈ k.
For the assertions about the action of t, note for (1) that t.(ti + 〈 f 〉) = ti+1 + 〈 f 〉 for
i < n − 1, while if i = n − 1, t.tn−1 + 〈 f 〉 = tn + 〈 f 〉 = −

∑n−1
k=0 aktk + 〈 f 〉. For (2) note that

t acts with matrix Jn(λ) if and only if (t − λ) acts by Jn(0), which is clear: as noted
in the statement of the Lemma, in order to get an upper triangular, rather than a
lower triangular, matrix, we need to order the basis by decreasing degree rather than
increasing degree. �

Theorem 13.4. (Rational Canonical Form.) Suppose that V is a nonzero finite dimensional
k-vector space and T : V → V is a linear map. Then there are unique nonconstant monic
polynomials f1, . . . , fk ∈ k[t] such that f1| f2| . . . | fk and a basis of V with respect to which T
has matrix which is block diagonal with blocks C( fi):

C( f1) 0 . . . 0

0 C( f2) 0
...

... 0
. . .

...
0 . . . 0 C( fk)


Proof. By the canonical form theorem and Lemma 13.1, there is an isomorphism
θ : V →

⊕k
i=1 k[t]/〈 fi〉 of k[t]-modules, where59 f1| f2| . . . | fk and the fi are monic

nonunits (hence nonconstant polynomials). The fi are unique (rather than unique
up to units) since we insist they are monic. Now the direct sum

⊕k
i=1 k[t]/〈 fi〉 has a

basis B given by the union of the bases in Lemma 13.3, and the preimage θ−1(B) is
thus a basis of V . The matrix of T with respect to this basis is thus the same as the
matrix of the action of t on the direct sum

⊕k
i=1 k[t]/〈 fi〉, and again by Lemma 13.3

this is clearly block diagonal with blocks C( fi) (1 ≤ i ≤ k) as required.
�

This matrix form for a linear map given by the previous theorem is known as
the Rational Canonical Form of T . Notice that this form, unlike the Jordan canonical
form, makes sense for a linear map on a vector space over any field, not just an
algebraically closed field like C.

We can also recover the Jordan canonical form for linear maps of C-vector spaces
from the second, primary decomposition, version of our structure theorem, which
expresses each module in terms of cyclic modules k[t]/〈 f k〉 where f is irreducible.
The monic irreducibles over C are exactly the polynomials t − λ for λ ∈ C. Thus the
second structure theorem tells us that, for V a finite dimensional complex vector
space and T : V → V , we may write V = V1 ⊕ V2 ⊕ . . .⊕ Vk where each Vi isomorphic
to C[t]/〈(t − λ)r〉 for some λ ∈ C, and r ∈ N. The Jordan canonical form now fol-
lows exactly as in the proof of the rational canonical form, replacing the use of the

59Note that k , 0 since we are assuming that V is not {0}.
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canonical form for modules with the primary decomposition, and the use of part
(1) of Lemma 13.3 with part (2) of the same Lemma.

13.1. Remark on computing rational canonical form. It is also worth considering
how one can explicitly compute the decomposition that yields the rational canon-
ical form: our proof of the existence of the canonical form is constructive, so if we
can find a presentation of the k[t] module given by a linear map acting on a k-vector
space V then we should be able to compute. The following proposition shows one
way to do this.

Proposition 13.5. Let V be an n-dimensional k-vector space and φ : V → V a linear map.
If φ has matrix A ∈ Matn(k) with respect to a basis {e1, . . . , en} of V , then the k[t]-module
corresponding to (V, φ) has a presentation

k[t]n r // k[t]n f // V
where the homomorphism r between the free k[t]-modules is given by the matrix tIn − A ∈
Matn(k[t]), and the map from f : k[t]n → V is given by ( f1, . . . , fn) 7→

∑n
i=1 fi(A)(ei).

Proof. Sketch: Since t acts by φ on V , and φ has matrix A, it follows that the image
N of the map r lies in the kernel of the f . It thus suffices to check that this map
is injective and its image is the whole kernel. To see that it is the whole kernel,
let F = kn ⊂ k[t]n be the copy of kn embedded as the degree zero polynomials. It
follows immediately from the definitions that f restricts to an k-linear isomorphism
from F to V , and thus it is enough to show that N + F = k[t]n and N ∩F = {0} (where
the former is the vector space sum). Both of these statements can be checked directly:
the intersection is zero because f restricts to an isomorphism on F and N ⊆ ker( f ).
The sum N + F must be all of k[t]n since it is easy to check that it is a submodule and
it contains F which is a generating set. Finally, since the quotient k[t]n/N is torsion,
N must have rank n and hence r does not have a kernel (since the kernel would
have to be free of positive rank, and hence the image would have rank less than
n.) �

Example 13.6. Let A be the matrix

A =

 0 1 0
0 0 1
−1 −2 −3


Then we have

tI3 − A =

 t −1 0
0 t −1
1 2 3 + t

 ∼
 1 2 3 + t

0 t −1
t −1 0

 ∼
 1 0 0

0 t −1
0 −1 − 2t −3t − t2


∼

 1 0 0
0 −1 t
0 −3t − t2 −1 − 2t

 ∼
 1 0 0

0 −1 0
0 0 −t3 − 3t2 − 2t − 1


so that (Q3, A) is isomorphic as a Q[t]-module to Q[t]/〈g〉where g = t3 + 3t2 + 2t + 1.
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14. APPENDIX A: POLYNOMIAL RINGS AND CONVOLUTION.

In this appendix we discuss in somewhat more detail the construction of polyno-
mials rings with coefficients in an arbitrary ring, and point out how the construc-
tion generalizes in a number of interesting ways.

Consider the set C[t] of polynomials with complex coefficients. This is a ring
with the “obvious” addition and multiplication: if p, q are polynomials, then p + q
and p.q are the polynomials given by pointwise addition and multiplication – that
is, p.q(z) = p(z).q(z) for all z ∈ C and similarly for addition. In other words, we
realise the ring of polynomials with complex coefficients as a subring of the ring of
all functions from C to itself. To check that polynomials do indeed form a subring,
we need to check (amongst other things60) that p.q is a polynomial if p and q are.
But let p =

∑N
k=0 aktk and q =

∑M
k=0 bktk. Then

p.q =

 N∑
k=0

aktk


 M∑

l=0

bltl

 =
∑
k,l

akbktk+l

=

N+M∑
n=0

(
∑

k+l=n

akbk)tn,

(14.1)

where we take ak = 0 for k > N and bl = 0 for l > M, and the second line is evidently
a polynomial function as required.

However, if we want to consider polynomials with coefficients in an arbitrary
ring, we encounter the problem that a polynomial will not determined by its values
on elements of the ring: for example if R = Z/2Z, then since R has two elements
there are only four functions from R to itself in total, but we want two polynomials
to be equal only if all their coefficients are the same and so we want infinitely many
polynomials even when our coefficient ring is finite. Indeed, for example, we want
1, t, t2, . . . to all be distinct as polynomials, but as functions on Z/2Z they are all
equal!

The solution is much like what we do when we construct complex numbers –
there we simply define a new multiplication on R2 and check it, along with vector
addition, satisfy the axioms for a field. We start by viewing a polynomial as its
sequence of coefficients, and define what we want the addition and multiplication
to be, and again just check that the ring axioms are satisfied. This approach will
also give us a new ring, called the ring of formal power series, simply by allowing
all sequences in R, not just ones which are zero for large enough n ∈ N.

Definition 14.1. Let R be a ring, and define R[[t]] = {a : N → R} the set of se-
quences taking values in R. We define binary operations as follows: for sequences61

60Though closure under product is probably the most substantial thing to check.
61As is standard enough for sequences, we write an rather than a(n) for the values of the sequence

a : N→ R.
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(an), (bn) ∈ R[[t]] let

(an) + (bn) = (an + bn); (an) ? (bn) = (cn), where cn =
∑

k+l=n

akbl

Thus the addition just comes from pointwise addition of functions from N to R, but
the multiplication comes from formula we got in Equation (14.1).

It is immediate that the sequence with all terms equal to 0 ∈ R is an additive iden-
tity in R[[t]], while the identity for our multiplication operation ? is the sequence
1 = (1, 0, . . .), that is 1n = 1 if n = 0 and 1n = 0 if n > 0. The fact that ? distributes
over addition is also straightforward to check, while the associativity of ? follows
because(

(an) ? (bn)
)
? (cn) =

( ∑
k+l+p=n

(akbl)cp
)

=
( ∑

k+l+p=n

ak(blcp)
)

= (an) ?
(
(bn) ? (cn)

)
Definition 14.2. Now let R[t] be the subset of R[[t]] consisting of sequences (an)
such that there is some N ∈ N for which an = 0 for all n > N. To check this is a
subring, notice that if (an), (bn) ∈ R[t] and an = 0 for all n > N and bn = 0 for all
n > M, then the sequence (cn) = (an) ? (bn) is zero for all n > N + M: indeed if
k + l = n > N + M we cannot have both k ≤ N and l ≤ M and so the product akbl will
be zero, and hence cn =

∑
k+l=n akbl = 0 for all n ≥ N + M.

Finally we want to relate our construction to the notation we are used to for
polynomials. Let t ∈ R[t] be the sequence (0, 1, 0, . . .), that is tn = 1 for n = 1 and
tn = 0 for all other n ∈ N. Then it is easy to check by induction that tk = t ? t ? . . . ? t
(k times) has tk

n = 1 if n = k and tk
n = 0 for all other n ∈ N. It follows that if (an) is

a sequence in R[t] for which an = 0 for all n > N then (an) =
∑N

k=0 aktk. Note that if
(an) is any element of R[[t]] it is the case that (an) =

∑
k∈N aktk, where the right-hand

side gives a well-defined sequence in R despite the infinite sum, because for any
integer k only finitely many (in fact exactly one) of the terms in the infinite sum are
non-zero. This is why the ring R[[t]] is known as the ring of formal power series.

Remark 14.3. This definition also allows us to define polynomial rings with many
variables: given a ring R let R[t1, . . . , tk] be defined inductively by R[t1, . . . , tk+1] =

(R[t1, . . . , tk])[tk+1]. Thus for example, R[t1, t2] is the ring of polynomials in t2 with
coefficients in R[t1].

Remark 14.4. The problem that a polynomial p ∈ R[t] is not determined by the
function it gives on the ring R can be resolved: recall the Evaluation Lemma which
says that if S is a ring and we are given a ring homomorphism i : R → S and an
element s ∈ S , then there is a unique ring homomorphism θs : R[t] → S which
restricts to i on R and has θs(t) = s. This allows us to produce, for every ring
homomorphism i : R → S and polynomial p ∈ R[t] a function pS : S → S : simply
take pS (s) = θs(p). In other words, given any homomorphism of rings i : R → S we
can evaluate a polynomial in R[t] on the elements of S , so the polynomial gives not
just a function on R but a function on any ring we can relate R to. In particular, if
R is a subring of S , the it makes sense to evaluate p ∈ R[t] on every element of S .
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The collection of all the functions we can associate to a polynomial in this way does
completely determine the polynomial.

14.1. Convolution algebras. The key to defining polynomial rings was the multi-
plication formula given by (14.1). This uses the fact that N has an addition opera-
tion. We can generalise this to give another interesting and important construction
of a ring.

Definition 14.5. Let G be a group and let R be a ring. If f : G → R is a function,
we let supp( f ) = {x ∈ G : f (x) , 0}. Let R[G] be the set of R-valued functions on G
which have finite support, that is functions f for which supp( f ) is a finite set. We
define ? to be the binary operation

(14.2) ( f ? g)(x) =
∑

y1y2=x

f (y1)g(y2).

If S 1 = supp( f ) and S 2 = supp(g), then the terms in the sum on the right-hand
side are zero unless (y1, y2) ∈ S 1 × S 2, hence this sum is finite since S 1 and S 2 are.
Moreover, supp( f ? g) is a subset of {xy ∈ G : x ∈ S 1, y ∈ S 2}, which is also clearly
finite, thus ? is indeed a binary operation. It is associative because

(( f ? g) ? h)(x) = ( f ? (g ? h))(x) =
∑

y1y2y3=x

f (y1)g(y2)h(y3).

Just as for polynomials, it is straight-forward to check that (R[G],+, ?, 0, δe) is
a ring, where + is pointwise addition, 0 is the function on G which is 0 on every
element of G, and δe is the indication fucntion of the identity element e of G, that is
δe(x) = 1 if x = e, δe(x) = 0 otherwise. This ring is known as the group algebra of G
with coefficients in R. This ring (when R = C) will be very important in the study
of representations of finite groups in the Part B representation theory course.

Example 14.6. Let G = Z. Show that the ring R[Z] is just the ring of Laurent poly-
nomials R[t, t−1].

Remark 14.7. i) The natural number N are of course not a group under addi-
tion, but the convolution product still makes sense. This is because we only
ever use the associativity of the product and the existence of an identity el-
ement in constructing the ring R[G]. Thus the construction actually works
for any monoid (Γ,×, e), that is, a set Γ with an associative binary operation
× and an identity element e ∈ Γ for the binary operation.

ii) Some books, especially those on representations of finite groups, present the
group algebra slightly differently: they define R[G] to be the set of formal
R-linear combinations on the elements of the group, and then define multi-
plication by extending the group product “linearly”, that is the elements of
R[G] are of the form

∑
g∈G ag.g where ag ∈ R and the product is given by

(
∑
g∈G

ag.g)(
∑
h∈G

bh.h) =
∑

g,h∈G

agbh(g.h) =
∑
x∈G

(
∑
gh=x

agbh).x
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This is readily seen to be isomorphic to the definition above via the map
which sends a group element g to the function eg which takes the value 1
on g and 0 on all other elements of G. The function-based approach is more
important when studying infinite groups with additional structure (such as
being a metric space say) when you can consider subrings of the ring of all
functions, such as continuous functions.

Remark 14.8. The restriction on the support of the functions in R[G] ensures that the
formula (14.2) gives a well-defined operation. Products given by this formula are
called convolution products and come up in many parts of mathematics. Note that
the formula is sometimes written less symmetrically as:

( f ? g)(x) =
∑
y∈G

f (xy−1)g(y),

If the group G is infinite, for example if G = R, then instead of summing over
elements of the group one can integrate (imposing some condition on functions
which ensures the integral makes sense and is finite) and the convolution formula
becomes:

( f ? g)(x) =

∫
R

f (x − y)g(y)dy,

which may be familiar from the study of integral transforms.
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15. APPENDIX B: UNIQUE FACTORIZATION FOR Z.

In this Appendix we establish unique factorization for the ring Z. The strategy of
proof will be what motivates the definition of a Euclidean Domain, so if you have
a good understanding of the material in this note, it should make the part of the
course on EDs, PIDs and UFDs easier to grasp.

Theorem 15.1. If n ∈ Z\{0,±1}, then we may write n = p1 . . . pk where the pi are primes
and the factorization is unique up to sign and reordering of the factors.

Remark 15.2. i) Most of the work we will need to do to prove the theorem will
be to understand what the right notion of a “prime” is. Once we establish
that, the proof of unique factorization will be quite straight forward.

ii) We work with all integers, not just positive ones, so we will have positive
and negative primes numbers.

iii) The uniqueness statement is slightly cumbersome to say, but in essence it
says the factorization is as unique as it can possibly be: for example if n = 6
then we can write

n = 2.3 = 3.2 = (−2).(−3) = (−3).(−2),

and while each of these are prime factorizations they are clearly all “essen-
tially the same”. The ambiguity of signs would be removed if we insisted
that n and all the primes were positive, but it is more natural to ask for a
statement which holds for any element of Z.

15.1. Highest common factors. Let’s begin with some (hopefully familiar enough)
terminology:

Definition 15.3. If n ∈ Z we say that a divides n, or a is a factor of n is there is an
integer b such that n = a.b. We will use the notation a | n to denote the fact that a
divides n.

Remark 15.4. Notice that if a | b then any multiple of b is also a multiple of a and so
bZ ⊆ aZ. Thus divisibility corresponds to containment of ideals. In particular, since
{0} ⊆ nZ, every integer divides 0 while 0 only divides itself.

The most basic observation about the integers and division is that, given any pair
of integers a, b, provided b is not zero, we can do “division by b with remainders”.
The next lemma makes this precise. Since we are working with all integers rather
than positive integers, it is convenient to use the absolute value function |.| : Z →
Z≥0.

Lemma 15.5. (Division algorithm.) For any a, b ∈ Z such that b , 0, there exist integers
q and r such that

i) a = q.b + r.
ii) |r| < |b|;

Proof. Note that if a = q.b + r then −a = (−q).b + (−r), and |r| = | − r| so that the pair
(−q,−r) satisfy the conditions we require for the integers (−a, b). Thus it is enough
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to prove the Lemma for a ≥ 0. Similarly if a = q.b + r then a = (−q).(−b) + r, so it is
enough to prove the Lemma in the case b > 0 also. We will prove this by induction
on a. If a < b then the result is clear as we may take q = 0 and r = a. If a ≥ b then
consider the set S = {q.b : q ∈ N, q.b ≤ a}. Since S is clearly finite (it is for example
contained in the set {1, 2, . . . , a}) it has a maximal element. Set q to be this element.
Then qb ≤ a < (q + 1)b, and so if r = a− q.b it follows 0 ≤ r < b, and we are done. �

Remark 15.6. Note that if we work with nonnegative integers a, b and insist that
q and r are nonnegative also then, for given a, b the integers q and r are unique,
but if we work with Z then they are not: Indeed qb + r = (q + 1).b + (r − b), and if
0 < r < b then −b < b − r < 0, so (q + 1, r − b) is an alternative solution. Concretely,
if (a, b) = (10, 7) say, then 10 = 1.7 + 3 = 2.7 − 4.

Notice also that while it makes sense to say m divides n for m, n elements of any
ring R, condition ii) of the Division Algorithm uses the absolute value function
and the ordering on positive integers, thus it won’t make sense for an arbitrary
ring. (It will, however, motivate the definition of a class of rings called “Euclidean
Domains”.)

The first step in understanding how factorization works in Z is to understand the
notion of a highest common factor. The crucial point is that the right condition for
a common factor to be the “highest” is not just to ask for the largest of the common
factors in the usual sense:

Definition 15.7. Let n,m ∈ Z. We say that d is a common factor of m, n if d | m and
d | n. We say that c is the highest common factor if it is a common factor and whenever
d ∈ Z is any other commmon factor then d|c. We will write h.c.f(m, n) for a highest
common factor of m and n.

The only downside of this definition is that it is not immediately clear that h.c.fs
always exist! On the other hand, it does follow from the definition that the highest
common factor, if it exists, is unique up to sign: If c1 and c2 are highest common
factors, then because c1 is a common factor and c2 is a highest common factor we
must have c1|c2, but symmetrically we also see that c2|c1. It is easy to see from this
that c1 = ±c2, and so if we require highest common factors to be non-negative, they
are unique. (Indeed the argument essentially repeats the proof we saw in lectures
that in an integral domain, the generators of a principal ideal are all associates.)

The existence of highest common factors relies on the division algorithm, as we
now show. The argument also proves that the ideals in Z are exactly the principal
ideals nZ, so since that is of independent interest, we establish this first.

Lemma 15.8. i) Let I be an ideal of Z. Then there is an n ∈ Z such that I = nZ, that
is, I is principal.

ii) Let m, n ∈ Z. The highest common factor h.c.f(m, n) exists and moreover there are
integers r, s ∈ Z such that h.c.f(m, n) = am + bn.

Proof. For the first part, if I = {0} then clearly I is the ideal generated by 0 ∈ Z and
we are done. If I , {0}, then the set {|k| : k ∈ I\{0}} is nonempty, and so we may
take n ∈ I with |n| minimal among nonzero elements of I. But now if a ∈ I is any
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element, we may write a = qn + r for some q, r ∈ Z with |r| < |n|. But r = a − q.n ∈ I,
so by the minimality of |n| we must have r = 0 and so a = qn. It follows that I ⊆ nZ.
But since n ∈ I we have by definition that nZ (the ideal generated by n) must lie in
I, hence I = nZ as required.

For the second part, note that if m, n are integers then

I = nZ + mZ = {r.n + s.m : r, s ∈ Z},

is the ideal generated by {m, n}. By the first part, I must be principal, and hence
there is some k ∈ Z such that I = kZ. But then since n,m ∈ I we must have k | n
and k | m so that k is a common factor. On the other hand, since k ∈ I, it follows
immediately from the definition of I that there are integers a, b such that k = am+sb.
Now if d is any common factor of m and n, then it is clear that d divides any integer
of the form r.m+ s.n, and so d divides every element of I and hence d | k. The second
part of the Lemma follows immediately. �

Remark 15.9. The second part of the above Lemma is usually known as Bézout’s
Lemma. Its proof has the advantage that it can actually be made constructive. (This
is not needed for the rest of this note, but is something you saw before in Construc-
tive Mathematics.)

Suppose that m, n are integers and 0 < n < m. Euclid’s Algorithm gives a way
to compute h.c.f(n,m). Let n0 = m, n1 = n, and if n0 > n1 > . . . > nk > 0 have been
defined, define nk+1 by setting nk−1 = qknk + nk+1 where 0 ≤ nk+1 < nk (since we
are insisting everything is positive, the division algorithm ensures this uniquely
defines the integers qk and nk+1). Clearly this process must terminate with nl−1 >
nl = 0 for some l > 0.

Lemma 15.10. The integer nl−1 is the highest common factor of the pair (m, n)

Proof. The equation nk−1 = qknk + nk+1 shows that any common factor of the pair
(nk−1, nk) is also a common factor of the pair (nk, nk+1). Thus

h.c.f(m, n) = h.c.f(n0, n1) = h.c.f(n1, n2) = . . . = h.c.f(nl−1, 0) = nl−1.

�

15.2. Characterising prime numbers. We are almost ready to prove unique fac-
torization now. The last ingredient that we need is a better understanding of the
properties of prime numbers.

Definition 15.11. An integer n ∈ Z is said to be irreducible if n < {±1} and its only
factors are {±1,±n}, that is, if n = a.b for some a, b ∈ Z then either a = ±1 or b = ±1.

The notion of an irreducible integer is what people normally call a “prime”, but
there is another characterization of prime integers which is the key to the proof
of unique factorization, and we reserve the term “prime” for this characterization.
(For rings other than Z, the two notions are not necesarily the same.)

Definition 15.12. Let n ∈ Z. Then we say n is prime if n < {±1} and whenever n | a.b,
either n | a or n | b (or both). (Using the terminology for ideals which we have
developed, n is prime whenever nZ is a prime ideal in Z).
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Remark 15.13. Note that it follows easily by induction that if p is a prime number
and p | a1 . . . ak for ai ∈ Z, (1 ≤ i ≤ k), then there is some i with p | ai.

We now want to show that the irreducible and prime integers are the same thing.
This is a consequence of Bézout’s Lemma, as we now show:

Lemma 15.14. If n ∈ Z\{0} then n is irreducible if and only if n is prime.

Proof. Suppose that n is a nonzero prime and write n = a.b for integers a, b. Then
clearly n | a.b so by definition we must have n | a or n | b. By symmetry we may
assume that n | a. Then a = n.p for some integer p and so n = (np)b = n(pb) and
hence n(1 − pb) = 0. Since n is nonzero, it follows that p.b = 1 so that b = ±1, and
thus n is irreducible.

Conversely, suppose that n is irreducible. Then if n | a.b, suppose that n does not
divide a. Then by irreducibility, we must have h.c.f(a, n) = 1, and so by part ii) of
Lemma 15.8 (Bézout’s Lemma) we may write 1 = ra + sn for some r, s ∈ Z. But then
b = r(a.b) + n(sb), and hence n divides b as required. �

15.3. Unique factorization. We are now ready to prove unique factorization for Z.

Theorem 15.15. Any integer n ∈ Z\{0,±1} can be written as a product n = p1 p2 . . . pk of
primes, uniquely up to reordering and sign.

Proof. We first show that any such integer n is a product of primes using induction
on |n|. Since n < {0,±1}, the smallest value for |n| is 2, and in that case n = ±2 and
so n itself is prime. If |n| > 2, then there are two cases: either n is prime, in which
we are done, or it can be written as a product n = a.b where |a| > 0 and |b| > 0. But
then certainly |a|, |b| < |n|, so by induction we can write a = r1 . . . rp and b = s1 . . . sq
where the ri and s j are primes. Thus we see that

n = a.b = r1 . . . rps1 . . . sq,

showing that n is a product of primes.
Next we must show the product is unique. For this we again use induction, but

now on the number of prime factors of n. Since we don’t know uniqueness yet,
we have to be slightly careful here: it might be that n can be written a product
of primes in two different ways where the number of factors is different in the two
factorizations. Thus we define, for n ∈ Z\{0,±1}, the number P(n) to be the minimum
number of prime factors occuring in a prime factorization of n, and use induction
on P(n). If P(n) = 1 then n is prime. But then the only factors of n are {±1,±n} and
so n can be written uniquely as a product of one prime (itself) (or as (−1).(−n)).

Now if P(n) = k > 1, assume uniqueness holds for any m ∈ Zwith P(m) < k. Write
n = p1 . . . pk and suppose that we have another prime factorization n = q1 . . . qt
(where by definition t ≥ k). Now p1 is prime and p1 | n = q1 . . . qt, so as above we
must have p1 | qi for some i (1 ≤ i ≤ t) and reordering the q js we can assume that
i = 1. Then since q1 is prime we find p1 = ±q1. Now if m = p2 . . . pk we must have
P(m) ≤ k − 1, and so by induction unique factorization holds for m = p2 . . . pk =

(±q2) . . . ql, and so it follows that the pis and q js for i, j > 1 are also equal up to signs
and reordering. �
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Remark 15.16. As mentioned before, the ambiguity about signs disappears if we
only consider factorization for positive integers. If we were only interested in Z
that might well be the best thing to do, but since we are interested in generalising
to other rings where there may not be a convenient analogue of the notion of a
positive integer, it is better to find a statement valid for all integers. Note that
the reason signs appear in the uniqueness statement is because {±1} is the group
of units in the ring Z. Thus one could rephrase the statement by saying that the
factorization is unique “up to reordering and units”.

We finish with a brief discussion of a ring only slightly bigger than Z where
the notion of an irreducible element and a prime element are different, and where
unique factorization fails.

Example 15.17. Let R = Z[
√
−17] = {a + b

√
−17 : a, b ∈ Z}. It is straight-forward to

check that R is a subring of C. The function N : R → Z given by N(a + b
√
−17) =

a2 + 17b2 is multiplicative, in that N(z.w) = N(z).N(w) (indeed it is just the restriction
to R of the function z 7→ |z|2 = zz̄ on C). Using this, one can show that 2, 3, and
1±
√
−17 are all irreducible element of R (in the same sense as we used for ordinary

integers). It then follows that none of these elements are prime – indeed it is easy
to see that there is an element of R which is a product of both two irreducibles and
three irreducibles.
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16. APPENDIX C: A PID WHICH IS NOT A ED

In this appendix, following the article62 of Cámploi which you can read through
JSTOR, we outline a proof that the ring R = Z[ 1

2 (1 +
√
−19)] is a PID but not a

Euclidean domain. (This is for curiosity only, it is not examinable.)
For convenience we write θ = 1

2 (1 +
√
−19). We need to do two things, first to

show that R is not a Euclidean domain, and then to show that nevertheless it is a
PID. We will need the restriction of the square of the modulus function on complex
numbers, which we will write as N, that is N(a+ ib) = a2 +b2 (and crucially N(z.w) =

N(z).N(w)). It is easy to check that θ2 = θ−5, so that in particular R = {a+bθ : a, b ∈ Z}.
Moreover, we have N(a+bθ) = a2+ab+5b2, and so if z ∈ R\{0} then a2+ab+5b2 = N(z)
is a positive integer.

R is not a Euclidean Domain:
Using the function N it is not too hard to see that the units in R are exactly {±1},

because if r ∈ R is a unit N(r) must be 1. But if a2+ab+5b2 = 1 and a.b ≥ 0 then clearly
we must have b = 0 and a = ±1. If a.b ≤ 0 then writing N(a + bθ) = (a + b)2 − ab + 4b2

we again see that b = 0, and so the only units are ±1. Similar considerations using N
allow you to show that 2, 3 are irreducible elements in R. Using these facts we can
show that R is not a Euclidean domain: Suppose for the sake of a contradiction that
d : R\{0} → N is a Euclidean function on R. Then consider the minimal value k of d
on the elements of R\{0} which are not units, and pick some m ∈ R with d(m) = k. If
we divide m into 2 we see that we have 2 = q.m + r, where r = 0 or d(r) < d(m), and
hence either m divides 2 or r is a unit. Since 2 is irreducible this would imply either
m = ±2 (since the only units in R are ±1) or 2 = q.m ± 1, which since m is not a unit,
forces q.m = 3 and hence again since 3 is irreducible m = ±3. Thus we see that m is
±2 or ±3. But now consider dividing m into θ, say θ = q.m + r. Certainly θ cannot
be divisible by 2 or 3, but then as before we must have r = ±1, which would imply
θ ± 1 = ±2q or ±3q for some q ∈ R, which is clearly impossible. It follows that R is
not a Euclidean Domain.

R is a PID:
To see that R is a PID the key is to show that it is not too far from being a Eu-

clidean Domain. Recall that the proof that a Euclidean Domain is a PID takes a ele-
ment n of minimal Euclidean norm in an ideal I and shows this must be a generator
because if m ∈ I then m = q.n + r where d(r) < d(n) or r = 0, and r = m− q.n ∈ I forces
r = 0. This argument works for r any linear combination of m and n, so we can
prove a ring is a PID if we can find a function d which satisfies the following weaker
version of the condition for a Euclidean norm: Say that d : R\{0} → N is a weak norm
if given any n ∈ R\{0} and m ∈ R there exist α, β ∈ R such that d(α.m + β.n) < d(n). If a
ring has a weak norm then the above argument shows it is a PID. Hence to see that
R = Z[θ] is a PID, it is enough to check that N(a + bθ) = a2 + ab + 5b2, the squared
modulus, is a weak norm. The proof is similar but somewhat more involved to how

62“A Principal Ideal Domain that is not a Euclidean Domain”, Oscar A. Cámpoli, American Math-
ematical Monthly, vol. 95, no. 9, 868-871.
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one shows that Z[i] are a Euclidean Domain with the same function. Let m, n ∈ R,
and consider m/n ∈ C. We want to find α, β ∈ R so that N(β(m/n) − α) < 1, so that
N(β.n − α.n) < N(n). But it is easy to check that any ratio of elements of R lies in
{a + bθ : a, b ∈ Q} (just clear denominators using the complex conjugate). Hence for
any such m/n we can subtract from it an element of R to ensure that the imaginary
part of the result lies between ±

√
19/4. Now63 if the imaginary part of the result,

q say, is less that
√

3/2 in modulus, then q will be within 1 or an element of Z ⊂ R,
so it suffices to consider the case

√
3/2 < Im(q) <

√
19/4 (the case when Im(q) < 0

being similar). But then 2q−θ has imaginary part between
√

3−
√

19/2 and 0, which
you can check is less that

√
3/2, and so we are done.

MATHEMATICAL INSTITUTE, OXFORD.

63This analysis follows Rob Wilson’s note which you can read at
www.maths.qmul.ac.uk/ raw/MTH5100/PIDnotED.pdf.


